An Evaluation of the Adaptation Capabilities in
Programming Languages -

Carlo Ghezzi, Matteo Pradella, Guido Salvaneschi
DEEPSE Group
DEI, Politecnico di Milano
Piazza L. Da Vinci, 32
Milano, Italy
{ghezzi, pradella, salvaneschi}@elet.polimi.it

ABSTRACT

In recent years the need for software applications to adapt
to the environment in which they are situated has become
common. Beside architectural approaches, language-level
support for the development of adaptable and context-aware
software have been investigated. Many existing solutions
adopt ad hoc programming paradigms such as aspect ori-
ented programming (AOP) or context oriented program-
ming (COP). In this paper we investigate the use of the
abstractions offered by traditional object-oriented and func-
tional paradigms for the development of context-adaptable
systems. We carry out our analysis along a set of concep-
tual directions which consider the requirement of functional
adaptation beside non functional requirements such as safety
and effective modularization. Our analysis were validated
though the development of several prototypes of an adapt-
able cache server which is chosen as the running example
through the paper. We provide an estimation of the perfor-
mance advantages of the techniques based traditional pro-
gramming languages compared with context-oriented pro-
gramming.

Categories and Subject Descriptors

D.1 [Software|: Programming Techniques— Object-oriented
Programming

; D.3.3 [Programming Languages|: Language Con-
structs and Features

General Terms

Languages, Design

Keywords

Context, Self-adaptive software, Context-oriented program-

*This research has been funded by the European Commu-
nity’s IDEAS-ERC Programme, Project 227977 (SMSCom).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEAMS’11, May 23-24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2010 ACM 978-1-4503-0575-4/11/05 ...$10.00.

ming

1. INTRODUCTION

Contert-awareness in computing is a general term indicat-
ing a link between the system behavior and the environment
in which a system operates. Emerging fields such as ubig-
uitous computing and pervasive computing [6] have made
context-awareness a common requirement for software sys-
tems. Because of the dynamic nature of context, there is a
tight relationships between context-awareness and dynamic
adaptability. A software application is adaptable if it has the
capability of changing its behavior dynamically (i.e. at run
time) in response to a request for the fulfilling of a change
in its requirements.

The development and the maintenance of adaptable soft-
ware is challenging for several reasons. Architectures, mid-
dleware or languages must support dynamic behavior chang-
ing and such feature should be available to programmers
in a usable and effective way. The adaptation code often
crosscuts the system functionalities and careful engineering
is required to manage the separation of concerns. Among
the other solutions two programming techniques specifically
address these problems. COP is a programming paradigm
specifically thought for dynamic adaptation [21]. AOP has
been proved useful in realizing the separation of concerns in
adaptable systems at development time [27].

This paper investigates the support that most common
programming paradigms, object-oriented and functional, of-
fer for the development of adaptable and context-aware sys-
tems. Our intent was to probe how the abstractions offered
by programming languages can be directly leveraged with-
out resorting to special framework such as COP or AOP. We
also evaluated only the direct employment of such abstrac-
tion, without considering the even reasonable option of the
encapsulation in in ad hoc libraries.

We identified a set of dimensions which are significantly in-
volved in context-adaptable applications and we used them
to analyze the abstractions offered by different languages.
The confidence in our analysis was reinforced through the
development of several prototypes of an adaptable system
in different languages. Each prototype uses different ab-
stractions for the adaptability and context-awareness con-
cerns. An adaptable cache server was chosen as a case study
for the prototypes, which were developed by the students
of a master course in advanced software engineering. The
cache server is adopted as a working example for our analysis
through the paper.

COP is a solution for context adaptation which supports
abstractions specifically aimed to manage program adapta-
tions. However these facilities comes at a cost. In order to
estimate the performance overhead introduced by particular
purpose paradigms, we implemented a set of benchmarks to
compare the techniques discussed in this paper with func-
tionally equivalent implementations using COP.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the related works, Section 3 describes the
analysis framework which is used trough the paper. In Sec-
tion 4 we discuss the language features that can be used
to implement context-adaptable systems. In Section 5 we
compare the performance of the native language implemen-
tations with COP. In Section 6 there are the conclusions and
the future work.

2. RELATED WORK

McKinley et al. [23] review the technologies supporting
compositional adaptation. Three key enabling technologies
are identified: separation of concerns, component-based de-
sign and computational reflection [22]. An evaluation of the
use of computational reflection as a programming language
support for dynamic adaptability can be found in [16]. The
problem of dynamic software adaptation to respond to con-
text changes has been extensively tackled from a software
architecture standpoint [14, 24, 30, 18, 29].

AOP has been extensively used as a support for the im-
plementation of adaptable systems. This solution is applied
in Sadjadi et al. [28] for the development of TRAP/J, a
framework for the generation of adaptable Java programs.
In TRAP/J, the need for dynamically activating a certain
behavior in an application requires the use of AOP in con-
junction with behavioral reflection. Dynamic AOP [25] is
based on waving aspects at run time. The introduction of
Dynamic AOP for adaptation has been proposed in the filed
of autonomic systems by Greenwood [20]. This technique is
employed for example by Baresi [12] AOP for a loose com-
position framework for autonomic systems and by Engel [17]
for the development of an adaptable operating system ker-
nel.

COP [21] has been proposed as an ad hoc approach to
context adaptation and management. This goal is achieved

through abstractions that enable application context-awareness

without hard-wired conditional statements spread over the
application code. Starting from the pioneering work on Lisp
[15] many COP extensions have been developed for different
languages such as Python Smalltalk, Ruby, JavaScript and
Groovy. With the time this effort have extended to less dy-
namic languages such as Java [21, 9]. A fairly complete com-
parison of the existing languages with a performance eval-
uation of the available solutions can be found in [8]. The
benefits of COP in the development of context-adaptable
software has been demonstrated in the field of mobile ser-
vice computing and ubiquitous applications [7] [11] and for
desktop applications [10].

Although we are also working on adding COP features to
an existing language (Erlang) [19], in this paper we wish to
explore how far we can actually go by exploiting fairly stan-
dard and general linguistic mechanisms provided by non-
specialized languages. The purpose is twofold. On the one
side our analysis can provide guidance to designing ad-hoc
mechanisms. On the other side, it can help the designers
who need to use standard languages in adapting a system-

CONTEXT
MANAGER
current contexts

data

b active variations
© o \x& N
o OO
|
° TN
= = SOFTWARE
SENSORS [DATA J { ADAPTATION] SYSTEM
INTERPRETATION PLAN
Figure 1: The reference conceptual model of a

context-adaptable system.

atic approach to structuring context-aware behaviors.

3. ANALYSIS FRAMEWORK

In this section we introduce the conceptual model to which
we refer throughout the paper. We describe the specification
of the cache server prototype, we motivate the choice of the
languages that were used for the implementation and we
introduce the dimensions along with we conduct the analysis
of Section 4.

3.1 Conceptual Model

The conceptual model of an adaptable system is shaped
in Figure 1. We suppose that the system collects the data
of interest through sensors. A context manager component
receives data from sensors in the form of numerical observ-
able and associate them to contexts. We refer as context
the symbolic observable that captures a condition in their
environment or in the system itself that is significant for
adaptation.

At each instant of time a set of contexts can be active in
the system. The mapping between data and active contexts
is determined by the data interpretation specification. For
example the context manager observes from sensor an aver-
age bandwidth usage of 100 Mb/sec, it decides on the base of
the data interpretation specification that thelow-bandwidth-
available context is active. Each context is associated to one
or more variations that must be applied to the software sys-
tem in order to make it adapt to the active contexts. This
mapping is expressed by an adaptation plan.

We refer as a variation each computational unit that can
be atomically activated in order to change the behavior of
the application. The implementation of the adaptations is
strictly related to the system technology and to the language
in use.

3.2 Prototypes Implementation

In order to evaluate the support that in practise is given by
the abstraction supported by different languages, we devel-
oped several prototypes of an adaptable cache server. The
specification we adopted was deliberately generic, with the
goal of making it simpler to fit the requirements using the
idiomatic abstractions of each language.

The server offers caching functionalities, speeding up the
retrieval of information generated on other machines. Items
stored in the cache are resources like dynamically created
web pages, or serialized objects. The server exposes a set of
primitives for resource store and retrieval, such as lookup (key),

store(key,value) and remove(key). The cache server is context-
aware and adaptive in the sense that the behavior of the
server can be changed dynamically depending of the ac-
tive contexts. The following functionalities are the possible
server adaptations, i.e. can be activated and deactivated at
run time:

Memory Constraint. The server starts performing opti-
mizations aimed to reduce the RAM consumption, which is
the critical resource.

Response Time Constraint. The server starts operating
with the objective of being as fast as possible optimizing for
short response. This requires to minimize the disk access
and to make a strong use of the memory.

Low Bandwidth. The server starts minimizing the band-
width consumption, maybe at the cost of a reduction in the
quality of the service, e.g. no transmission of metadata as-
sociated to the stored items.

Privacy. The resources starts being ciphered before being
stored in the cache and deciphered when requested.
Backup. The server starts saving the resources on a per-
sistent redundant storage in order to be resilient to possible
failures.

Security. The server must behave differently depending on
the authentication status of the client. Client authentica-
tion must make the server adapt and start exposing its full
functionalities.

Logging. The server is turned in debug mode: each signifi-
cant operation is logged.

Each group of student was assigned a language and it was
asked to realize a proof-of-concept prototype of the specifica-
tion above. The goal was to demonstrate the support offered
by each language in the implementation of the adaptive con-
cerns of the specification. The students were provided with
some language-specific features to explore and then left free
to use other features that could fit the assigned problem. On
the whole, 12 prototypes were developed, with an in-depth
investigation of several language features. In Section 4 we
report the most interesting results.

3.3 Languages

The languages we chose for our analysis and for the im-
plementation of the prototypes are Erlang [1], Python [3],
Ruby [4], F# [2] and Scala [5]. We believe that these lan-
guages offer a good test suite for our comparison. They cover
all the most widespread programming paradigms, procedu-
ral, object oriented, and functional, they also cover both
static and dynamic typing. They offer a vast set of differ-
ent features, which cover all the major features of modern
programming languages: classes, objects, interfaces, traits,
modules, multiple inheritance, parametric and ad hoc poly-
morphism, dynamic dispatching, first class functions, clo-
sures, algebraic data types, patter matching, eval functions.
Erlang is the oldest language in the set, dating back to the
’80s, Python and Ruby have been released in the ’90s, while
F+# and Scala have appeared in the last decade. This has an
impact on the features that each of them supports and on
the general programming style enforced by each language.
In the following we briefly point out the characteristic as-
pects of each of the languages in our test suite.

Erlang. It is an interpreted functional language, with sin-
gle assignment, and dynamic typing. It has an agent-based
concurrency model with native support for fault tolerance

and distribution.

Python. It is an interpreted programming language sup-
porting multiple programming paradigms: object oriented,
imperative and functional. It is dynamically typed and it
supports multiple inheritance and metaprogramming.
Ruby. It is a dynamically-typed object-oriented interpreted
programming language. It supports single inheritance and
mixins. Metaprogramming is idiomatic and common.
Scala. It is a general purpose programming language inte-
grating features of object-oriented and functional languages.
Scala runs on the Java VM and it is compatible with Java
libraries or existing application code. It is a statically typed
language with type inference, algebraic data types, traits,
agent-based concurrency model.

F#. It is a multi-paradigm programming language that
encompasses the functional and the object-oriented styles. It
targets the NET Framework and it is heavily influenced by
OCaml. It is a strongly typed language with type inference,
algebraic data types, and single inheritance.

3.4 Dimensions

In the following we delineate the dimensions that we con-
sidered in our analysis. They take into account both aspects
related to the adaptation process, such as the dynamic vari-
ations activation and combination, and non functional con-
cerns such as variations modularization.

Abstraction. This dimension defines which language ab-
straction are used to implement variations and the basic be-
havior. We consider only native abstractions without the
emulation through the use of other constructs or libraries.

Generic code. A key point in the development of context-
aware systems is to allow programmers to write code whose
behavior is context-dependent, without that context adap-
tation is explicitly triggered in each location of the control
flow where it should occur. This dimension captures how
the code is written in order to make adaptation transparent
to the programmer.

Variation combination. Since multiple contexts can be
active in the system at the same time, more than one vari-
ation can be active. If the active variations affect the same
functionalities of the software, they must be combined to-
gether. Static combination is performed when the system
is built up, and require to foresee all the possible configu-
rations in advance. Dynamic combination is done when the
application is running. This dimension captures how varia-
tions are combined together and with the basic behavior in
order to determine the final behavior of the system.

Variation activation. This dimension pinpoints the
mechanism through which variations are activated and start
affecting the behavior of the system. For example a varia-
tion can be activated assigning an object to a reference or
passing a parameter to a function.

Modularization. This dimension captures how varia-
tions and the basic behaviors are organized in the code base.
Such dimension can be strictly related to the abstractions
with which variation are expressed. For example in object-
oriented languages classes are both a language abstraction
and the basic code modularization unit.

Safety. This dimension captures how the occurrence of
errors associated to context-adaptation is avoided. In many
cases the compiler in statically typed languages provides
guarantees against the uprise of adaptation-related errors.

4. LANGUAGE FEATURES

4.1 Inheritance and Subtyping

The object-oriented paradigm is by far the most spread in
software development. For this reason we firstly address the
point of how the common features of the object-oriented lan-
guages can be used to develop context-adaptable software.
Since inheritance and subtyping have a central role in struc-
turing object-oriented programs it is interesting to discuss
how a context adaptable system can be designed leveraging
these features.

One of the possible uses of the inheritance in program-
ming languages is to support reuse of an implementation.
An entity B in a program inherits form an entity A if a set
of functionalities of B are taken from A. Inheritance be-
tween classes is the fundamental mechanism for code reuse
provided by object-oriented languages. Subtyping, instead,
refers to interface compatibility: a class B is a subtype of a
class A if an instance of A can be replaced by an instance
of B. In most object-oriented languages these orthogonal
concepts coincide since classes are used for inheritance rela-
tionships as well as for (sub)type declarations.

Since classes are the main modularization facility in object-
oriented languages, it is reasonable to adopt such abstraction
for the implementation of variations. We suppose that the
basic behavior is implemented in a class A, while the vari-
ation is implemented with a class Al that inherits from A.
In object-oriented languages a class can modify the behavior
exposed by its superclass overriding some of the superclasses’
methods. This does not necessary mean complete method
substitution, since from inside the overriding method a call
to super can execute the overridden (i.e. the superclass’)
implementation. The use of super allows to modify the be-
havior of a method by adding operations before or after its
execution instead of completely replacing it.

Abstraction. Variations are implemented as classes.

Generic code. Generic code is written leveraging ref-
erence polymorphism. For example generic code uses refer-
ences of (static) type A to which can be assigned instances of
subtypes of A, such as Al. Reference polymorphism guaran-
tees uniform management of both adapted and non adapted
objects.

Variation combination. Variation combination is achieved

by dynamic method dispatching, which chooses the subclass
implementation of a method if available, and through the
use of super calls to the parent class method.

Variation activation. Variation activation is given by
the instantiation of the class implementing the variation,
instead of the base class. This solution allows to perform
the adaptation only at instantiation time, which limits the
overall adaptability of the application.

Modularization. Variations and basic behaviors are im-
plemented with classes, which are usually the main modu-
larization unit in object-oriented languages.

Safety. In languages with static type system the compiler
assures that all the functions callable on the basic objects
are callable also in the adapted objects and all the super calls
have a corresponding implementation in the supertype.

The effect of single or multiple inheritance deserves to be
carefully discussed since it have strong consequences on code
replication. In languages with single inheritance, classes are
allowed to reuse the code of only one existing class. This lim-
its the use of this feature for the implementation of adapt-

Figure 2: The inheritance hierarchy for the adap-
tation to a single context. A naive implementation
single inheritance (left), the functionally correct one
(center) single inheritance, and the case with multi-
ple inheritance (right).

able systems.

Suppose that the inheritance hierarchy of an application
is structured as follows: a class A is subclassed by a class
B, which is in turn subclassed by C. The software normally
operates in a basic condition with no active context; occa-
sionally an adaptation must be performed to the context
contert]l. When contert! is active, the class Al is instan-
tiated instead of A. Now consider how to design the class
hierarchy that can model the system. A first attempt can
be to preserve the A — B — C' chain and add to each of this
classes the associated adapted class (Figure 2 left). However,
with this approach, if class Bl is instantiated in an object
b1, bl does not implement the functionalities associated to
the adaptation of A to the context contextl, although b1 is
of class A and therefore should expose also A’s part of adap-
tation. This issue is correctly addressed by the hierarchy in
Figure 2 (center). In this case the class B1 indirectly in-
herits from the class Al. Therefore the instantiation of Bl
results in an object that implements not only the variation
associated to B, but also the variation associated to A.

However another problem arises. Since the activation of
B1 implies the activation of A1, B1 must inherit form Al.
But B1 already inherits from B. Due to the single inher-
itance, the only solution is to replicate the code of B in a
class B’. Now Bl inherits from B’ (a replication of B) which
in turns inherits from Al.

Now consider the case with multiple inheritance as in Fig-
ure 2 (right): variations inherit from their “natural” parent
and from the variation of the parent. We assume a lineariza-
tion algorithm that gives precedence to left parents before
the right ones and to children before parents, so that the
linearization starting from C'1is C — Bl — B — Al — A. Tt
is evident that in this case there is no need for replication.

The problem of code replication is exacerbated in the pres-
ence of multiple contexts. Consider the case of single inheri-
tance and two possible contexts, contextl and context2. All
the combinations must be considered, such as the activa-
tion of both the Al and the A2 variation, and the activation
of Al or A2 only. This leads to a combinatorial explosion,
and to heavy code replication. For example the class B is
replicated four times. (Figure 3) Also in this case multiple
inheritance solves the problem leading to the hierarchy in
Figure 4. Dots represent classes that do not need to define
any code, since they inherit all the functionalities from other
classes.

Figure 3: The inheritance hierarchy for the adapta-
tion to two different contexts in the case of single
inheritance.

°
B12

Figure 4: The inheritance hierarchy for the adapta-
tion to two different contexts in the case of multiple
inheritance.

In Figure 5 and 6 we show an example of how multiple in-
heritance can be used for the software adaptation and as a
solution to the aforementioned issues. Scala allows to define
traits, which are an implementation of mixins [13]. Scala
traits are added in an object when it is instantiated, aug-
menting its functionalities. Since traits are a mechanism
orthogonal to the Scala single class inheritance and an ob-
ject can be augmented an arbitrary number of traits, they
introduce a way to obtain an analogous of multiple inheri-
tance in the language.

The basic behavior of the cache server is implemented
in the CacheServer class, which exposes the lookup and the
store methods. The CryptoVar trait implements a variation
which adds cryptographic functionalities to the CacheServer
class, overriding the lookup and store methods. Now sup-
pose that a version of the server is developed which is specific
for text files. This specialized version allows for searching
the matches of a regular expression in the cached files. The
TxtCacheServer trait specializes the CacheServer class imple-
menting the searching algorithm in the searchCache method.

CacheServer

+lookup(in key)
+store(in key, in value)

AN

Crypto

TxtCacheServer

+lookup(in key)

+searchCache(in regexp) +store(in key, in value)

TxtCrypto

+searchCache(in regexp)

Figure 5: UML diagram of the cache server example
implemented in Scala.

In case the cryptographic protection is activated on the con-
tent of the cache, it is no longer possible to search for a regu-
lar expression matching inside cached files, but files must be
decrypted on-the-fly to perform the searching. This feature
is a variation of the textual cache server basic behavior, and
is implemented in the CryptoTxt which overrides the search
method in TxtCacheServer doing the on-the-fly decryption.

The performOperation method in the application contains
the generic code which performs the method calls on the
cache server object. In normal context, a CacheServer is in-
stantiated with the TxtCacheServer trait. When the Crypto
context is active, a CacheServer is instantiated with the
TxtCacheServer trait and the variations associated to the
Crypto context, i.e. the CryptoTxt and the CryptoVar are
added. With respect to Figure 2 (right), CacheServer is
the class implementing the original behavior and maps to
the A class, TxtCacheServer is an extension of the basic be-
havior and maps to the class B, CryptoTxt is a variation
of CacheServer and maps to Al, CryptoVar is a variation of
CacheServer and maps to B1.

A comparison between Figure 2 (right) and Figure 5 shows
that the inheritance relationship between the CryptoTxt trait
and the Crypto trait is not statically enforced. However
the effect of this lacking link is obtained by adding traits
when the server is instantiated. In fact the dispatching or-
der obtained by trait addition is the same that would come
out from applying a linearization algorithm to the tree with
CryptoTxt inheriting from both TxtCacheServer and Crypto:
CryptoTxt-TxtCacheServer-Crypto-CacheServer. Note that in
Scala when traits are added to an object through the with
keyword, traits on the right come first.

4.2 First Class Functions

Functions are an abstraction available in practically any
programming language. They are cornerstone constructs in
the case of functional languages. Therefore it is natural to
explore their use as a solution to the issue of the development
of context-aware software.

A programming language is said to support first class
functions if functions are values in the computation. In these
languages functions can be created during the execution (via

object Main extends Application {
def performOperations(ctx :String) = {
val ¢s = ctx match {
case "Normal" =>
new CacheServer() with TxtCacheServer
case "Crypto" =>
new CacheServer() with CryptoTxt
with TxtCacheServer with CryptoVar
}
cs.store("keyl","vall")
cs.lookup("keyl")
cs.searchCache("regexp")
}
// In real world ask the context to a context manger
performOperations("Normal")
performOperations("Crypto")
}

class CacheServer {
def lookup(key :String) :String = {
// search for the value

}
def store(key :String, value :String) =
// store the value

}

trait CryptoVar extends CacheServer {
override def lookup(key :String) :String = {
val value = super.lookup(key)
// Value decryption ...
}
override def store(key :String, value :String) = {
val encrypted = // encrypt value
super.store(key, encrypted)
1}

trait TxtCacheServer extends CacheServer {
def searchCache(regexp :String) = {
// Search ...
3

trait CryptoTxt extends TxtCacheServer {
override def searchCache(regexp :String) = {
// Search with decryption...
1}

Figure 6: The cache server Scala implementation
leveraging traits for context adaptability.

lambda expressions), passed as arguments to other functions,
used as return values and stored in data structures. Some
programming languages also offer specific operators for func-
tion combination. For example the composition operator »
in F#, given two functions g and h, returns a function f
which performs the subsequent application of g and h.
Functions can be used to implement the different basic be-
haviors of the application and to modularize the associated
variations. If the language does not allow to pass functions
as parameters, choosing at run time the function to execute
according to the active context must be done explicitly with
an if chain, which results in poor engineering. First class
functions are needed for the dynamicity that is required
in adaptable software. In fact code can be made generic
through references to functions which are assigned only at
runtime. Moreover functions representing basic functional-
ities and functions representing variations can be dynami-
cally combined in order to obtain the needed behavior.

Abstractions. Functions are used to represent variations
and basic behaviors in the program.

Generic code. Program code manipulates function refer-
ences passing them around and calling them when needed.
The specific implementations are bounded to the references
only at run time.

Variation combination. Variations can be combined through
the combination of the functions that actually implement
them. For example if two variations are implemented in the
functions vari(par) and var2(par) and the basic behavior is
the function base (par), the combination of the two variations
with the basic behavior is given by base(var2(vari(par))).

Variation activation. Variations activation is done by
binding a function body to the function reference used in
the generic code.

Modularization. Functions usually are not the funda-
mental modularization entity in a program, since usually
they are included in a bigger modularization unit such as
classes or modules. In the development of context-aware
software these coarser-grain entities can be used to group
all the functions associated to the same context.

Safety. Strongly typed languages guarantee type con-
sistency in the use of function references (assignment and
function call) and in function combination.

Figure 7 shows an example use of first class functions to
support software adaptability. The cache server can acti-
vate logging and cryptography with the backup of the stored
items. The operateOnCahce function contains the generic
code of the application. The store function reference used
by operateOnCache is bound to the implementation returned
by variationCombinator.

The function variationCombination combines the varia-
tions trough the » operator on the bases of the active con-
text. The available variations are the functions loggingVar,
cryptoVar and backupVar, and the basic behavior is the func-
tion basicStore. When the SimpleContext context is active,
only the basicStore function is used, which implements the
basic store functionalities. When the DebugContext is ac-
tive, a logging facility is added to the store operation com-
bining the loggingVar function with the basicStore func-
tion. Finally, when the SafeContext is active, the backupVar,
cryptoVar and basicStore are combined to obtain the store
function to be executed in the generic code.

4.3 Modules as Values

Modules are language entities that help improving the sep-
aration of concerns and the maintainability. Modules inter-
act with the rest of the program through declared interfaces
which express provide and require relationships with other
modules.

Some languages, such as Erlang, support modules as val-
ues: modules can be directly involved in the computation,
being assigned to variables or passed to a function. More
importantly, fully qualified function calls (i.e. function calls
which explicitly specify the module from which the function
is taken) can be performed using a variable as a the module.
For example in Erlang the expression Mod:fun1() denotes a
call to the function funi in the module bound to the Mod
variable.

Modules can support the development of context-aware
systems in that the functions implementing the system func-
tionalities, in the flavor suitable for a certain context, can
be grouped in the same module. The right module is that

type Context =
DebugContext | SafeContext | SimpleContext

let variationCombinator activeContext =

let loggingVar(key, value) =
// logging...
(key, value)

let cryptoVar(key, value) =
// do encription ...
(key, "crypted" + value)

let backupVar(key, value) =
// send to backup server ...
(key, value)

let basicStore(key, value) =
// save in cache ...

match activeContext with
| DebugContext —> loggingVar >> basicStore
| SafeContext —>
backupVar >> cryptoVar >> basicStore
| SimpleContext —> basicStore

// The generic code using the store function
let operateOnCache store =

// do stuff ...

store ("keyl", "vall")

// do stuff ...

// Execute the generic code in a given context

// In real world context is asked to a ContextManager
operateOnCache (variationCombinator DebugContext)
operateOnCache (variationCombinator SafeContext)
operateOnCache (variationCombinator SimpleContext)

Figure 7: Context adaptation using first class func-
tions in F#.

chosen accordingly to the active context. Modules as values
allow to write generic code in which calls are performed on
a module variable which is late-bound to a module chosen
on the bases of the context.

Abstraction. Modules are used to implements either a
variation or a basic behavior. All the functions inside a
certain module are associated to that variation or to the
basic behavior.

Generic code. Generic code is written parametrically
with respect to the modules on which functions are called.
In particular, context-aware functions are called on a mod-
ule variable, dynamically assigning the actual value of the
variable (i.e. the module on which the call is to be done).

Variation combination. Functions inside variation mod-
ules can call the functions in other variation modules or in a
basic behavior module adding computation before and after
the call. This is a form of static combination. Dynamic
combination is obtained by using modules as values also
inside the variation modules in the same way of top-level
context-aware calls. The calls to other variation modules
are parametrized with respect to the module on which they
are performed and the module must be chosen depending
on the current context. This of course requires to propagate

the context information into the variation modules.

Variation activation. Variations are activated by bind-
ing the module that implements them to the variable on
which the context-aware calls are performed. This binding
can be changed at any time in the control flow of the pro-
gram.

Modularization. Modules are the fundamental coarse-
grain code unit of many programming languages. For this
reason using modules to implement variations appears to be
an effective solution which increase concerns separation and
maintainability.

Safety. Dynamically typed languages such as Erlang do
not give any assurance that the module variable on which a
function is called is bounded to a module that really contains
that function. In statically typed languages, this kind of
safety can be enforced by the compiler.

In Figure 8 we show an example of the use of module val-
ues for the implementation of adaptability in Erlang. The
client module, which calls the API of the cache server,
shows how the generic code is written. The calls to the
server API are performed on the Mod variable which is late-
bound to a module according to the current context. The
cache server can operate in save_memory, normal or debug con-
text. In the first lines of the client module, the proper
variation is activated assigning to the Mod variable the vari-
ation or basic module associated to the active context. In
normal context the cache server keeps the cached items in
memory and uses the basic behavior high_memory. When the
memory is scarce (i.e. the save_memory context is active),
the server starts using the disk and the low_memory varia-
tion is activated. The server also supports a debug context
which activates the logging variation. Note that the logging
variation adds the logging facility to the basic behavior and
therefore it calls in turn the high_memory module to perform
the store and lookup operations.

4.4 Dynamic Object Adaptation

In languages such as Java or C++ the attributes of an
object are determined by the class of which that object is
an instance. In such languages the structure of the objects
(methods and fields) is fixed by its class and cannot be mod-
ified at run time. More dynamic languages like Python and
Ruby do not have such constraint, allowing to change the
structure of an object during the execution.

For example in Python, objects are dictionaries of key-
value pairs, where the key is a method signature and the
value is the function implementing the method body. When
a method is called on the object, the dictionary is searched
for an entry whose key correspond to the method signature.
When the entry is found, the associated implementation is
executed.

The possibility of dynamically changing the methods im-
plemented by an object can be leveraged in the perspective
of context adaptation. The modification of the objects’ dic-
tionaries allows to change the behavior of the application
with an extremely fine granularity. Although this is a pow-
erful feature, it is hardly exploitable per se in building up a
context-aware application. Because of the low level granu-
larity of this adaptation mechanism, single method changes
would be scattered around the application code, which re-
sults in poor engineering. An obvious solution is to wrap
the use of such functionality inside a library which atomi-
cally performs all the dictionary modifications required by a

—module(client). —module(logging) .
operate(ActiveContext) —>
Mod = case ActiveContext of
save_memory —> low_memory;
normal —> high_memory;
debug —> logging

lookup(Key) —>
% Logging ...
high_memory:lookup(Key).

store(Key,Value) —>

—module (high_memory) . —module (low_memory) .

lookup(Key) —>
% Perform the lookup.

lookup(Key) —>
% Lookup value for Key

store(Key,Value) —>
% Store the value

store(Key,Value) —>
% Store (Key,Value)

end, % Logging ...
Mod:store("keyl","vall"), high_memory:store(Key,Value) .
% do stuff ...
Mod:lookup("keyl").
% do stuff ...

Figure 8: Adaptation through function calls on parametric modules in Erlang.

context change and exposes a higher level API to the user.

In the spirit of investigating the native constructs that
can be directly exploited for context adaptation, we chose to
organize the structural change of the objects accordingly to
templates, i.e. classes. In Python it is possible to dynami-
cally change the class of an object. This allows to use classes
as a modularization unit, grouping methods that implement
the object behavior in a certain context and which together
must be dynamically injected into the object.

Abstraction. Variations are represented as classes that
collect methods associated to a certain context condition.

Generic code. References to dynamically adaptable ob-
jects are passed around like normal reference are, and method
invocation is performed as usual.

Variation combination. Calls to parent classes allow
subclasses to add behaviors before and after the call to the
superclass. This mechanism allows to arrange the class hi-
erarchy in order to obtain the desired method combinations.
This combination occurs when the application is developed.
Since Python allows to define classes at run time, the par-
ents of a class and therefore of the adaptable object, can
be chosen dynamically. This gives the capability of carrying
out run time variation combination.

Variation activation. A variation is activated by as-
signing to an object the class that implements the variation.
Variation deactivation is implemented by restoring the orig-
inal object class. Variation (de)activation can occur in any
time along the control flow, and it is not limited to instan-
tiation time, with the variation that remains active for the
whole object’s lifetime (see Section 4.1).

Modularization. A class contains all the methods asso-
ciated to a certain variation.

Safety. Since this mechanism dynamically changes the
type of the object on which the adaptation is performed, no
guarantee can be given on the safety of methods calls that
are performed. Therefore, for example, a call to a non exist-
ing method on the adapted object fails at runtime. Classes
that implement variations must be designed carefully in or-
der to avoid this type of errors.

In Figure 9 we show the dynamic activation of the backup
functionality on the cache server. The class CacheServer de-
fines a store and a lookup methods. The adapt method sim-
ply wraps the class change of the CacheServer object. The
class change is carried out by assigning the __class__ at-
tribute of the object. The class BackupServer implements a
store method which performs the backup before delegating
the real store to the parent CacheServer class. When the
adapt function is called on the srv object, the type of srv

class CacheServer(object):
def store(self, key, value):
Store value

def lookup(self, key):
Lookup value for key
return value

def adapt(self, newClass):
self.__class__ = newClass

class BackupServer(CacheServer):
def store(self, key, value):
Backup (key,value)
CacheServer.store(self, key, value)

Generic code

srv = CacheServer()

def run():
srv.store("keyl","vall")
srv.adapt (BackupServer)
srv.store("keyl","vall")

Figure 9: Adaptation of a single object changing
the methods it implements via dynamically switch-
ing the object class.

is changed from CacheServer to BackupServer, and srv starts
exposing the backup functionalities.

S. COMPARISON WITH COP

Over the years, several languages have been extended with
contextual features. Each language supports the fundamen-
tal COP concept of language-level context adaptation in a
way which is specific of its programming model. For this
reason, COP languages constitute a family in which each
implementation comes with its own constructs and pecu-
liarities.

In this paper we consider the most common COP model,
which allows to define variations as partial method defini-
tions such as before, after and around methods. Such defini-
tions are declared inside first class entities called layers. The
with(activeLayers){codeBlock } statement activates in the
execution of codeBlock the variations declared inside active-
Layers. The proceed function is similar to the super call in
Java and executes the implementation of the method in the
next active layer or the original method if there are no more
active layers. In the following we analyze the COP mecha-

backupLayer = layer("backuplLayer")

class CacheServer(object):

Qbase

def store(self, key, value):
fact (F_CONST)

Qbase

def lookup(self, key):
fact (F_CONST)

Qaround (backupLayer)

def store(self, key, value):
fact (F_CONST)
proceed(key, value)

a = CacheServer()

def run():
a.store("keyl","vall")
with activelayer(backuplayer):
a.store("keyl","vall")

Figure 10: The cache server implemented in Con-
textPy.

nism using the dimensions identified in our framework.

Abstraction. Variations are implemented as layers con-
stituted of partial method implementations. Layers are first
class entities specifically introduced for context adaptation.

Generic code. Generic code is placed inside the scope of
the with statement. Method calls are dispatched according
to the active variations .

Variation combination. If several layers are active at
the same time, the partial method definitions inside each of
them are combined with the original methods.

Variation activation. Variations are activated using the
with statement. The activation is dynamically scoped to the
code block.

Modularization. COP provides different solutions: the
most noticeable are the modularization along layers (class-
in-layer) or along classes (layer-in-class). For example Con-
textPy [31] obey the layer-in-class discipline, because layers
are declared in the syntactic scope of classes (Figure 10).
Other cop languages such as ContextL [15] allows to define
layers apart from the classes they augment.

Safety. Statically typed COP languages guarantee that
the method combinations triggered by layer activations are
type safe.

5.1 Performance

The examples presented in this paper were all reimple-
mented in Python and in ContextPy, taking advantage of
the context-related abstraction offered by this language. As
an example, Figure 10 shows the COP version of the pro-
totype in Figure 9, implemented in ContextPy using layers.
The reason why we chose Python is twofold. On the one
hand, Python is a multiparadigm language that supports all
the features presented in this paper. On the other hand, its
COP counterpart ContextPy is a relatively fast implemen-
tation [8] among mainstream languages supporting all the
required features.

The experimental results are shown in Figure 11. Each
line correspond to a prototype. The data refer to 10° execu-
tions of a combination of variations activations and methods
calls, like run in Figure 10. Since COP features mainly in-

tpass t1 tio tioo | fn
Inheritance 0.53 | 1.33 | 1.90 | 21.4 9
Layers 5.01 | 5.64 | 6.76 | 26.8
First class functions 0.44 | 0.75 | 1.18 | 14.45 6
Layers 4.24 | 4.82 | 5.26 | 18.54
Modules as values 0.35 | 0.82 | 1.42 | 18.35 8
Layers 5.44 | 6.04 | 6.75 | 24.08
Dynamic obj. adapt. | 0.25 | 0.47 | 0.75 | 7.10 3
Layers 1.95 | 2.22 | 2.44 | 8.87

Figure 11: Performance comparison between COP
and native language implementations. All values are
expressed in seconds.

troduce performance penalties on method dispatching, we
repeated the experiments with different amounts of compu-
tations carried out inside each method. The tp4ss column
corresponds to empty method bodies. The ¢,, columns show
the results when a method body computes the factorial of
n. To keep the examples of the previous sections unchanged,
the comparison only makes sense between each example and
its layer-based implementation, since the examples have a
different amount of functions/methods involved. The fn col-
umn gives the number of method calls for each benchmark
execution. Since each benchmark is executed 10° times, in
the case of the benchmark in Figure 10 (line 7 of Figure 11)
we have a total amount of 3-10° calls to the store method,
including the associated around method.

Our findings highlights the significant overhead of COP
implementations, that at worst can be one order of magni-
tude slower than the native languages counterparts. Such
poor performances are probably due to the fact that COP
languages are still immature and were developed without
optimization in mind. However this result makes even more
interesting the systematic investigation of the use of tra-
ditional language constructs in the development of context
adaptable systems.

6. CONCLUSION AND FUTURE WORK

In this work we analyzed the support given by the ab-
stractions offered by different programming languages for
the development of context-aware adaptable software. To
carry on our investigation we proposed a set of dimensions
which we believe can characterize the fundamental concerns
of language-level adaptation. Our purposes for the future
point to two directions. On the one hand we plan to de-
velop new dimensions to take into account elements that
in this paper have been neglected. On the other hand we
intend to analyze with the framework delineated in this pa-
per also the use of programming paradigms such as AOP,
COP, or implicit invocation (II) [26] for the development of
adaptable software. We expect that this work will require
a generalization of the dimensions identified so far and the
specification of new dimensions.

7. REFERENCES

[1] http://erlang.org. Reference website for open-source
Erlang.
[2] http://research.microsoft.com/fsharp.

[3] http://www.python.org/.

[4]

[5]
[6]

[12]

[13]

[14]

[18]

http://www.ruby-lang.org/.
http://www.scala-lang.org/.

G. D. Abowd and E. D. Mynatt. Charting past,
present, and future research in ubiquitous computing.
ACM Trans. Comput.-Hum. Interact., 7:29-58, March
2000.

M. Appeltauer and R. Hirschfeld. Explicit language
and infrastructure support for context-aware services.
In GI Jahrestagung (1), pages 164-170, 2008.

M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,
and M. Perscheid. A comparison of context-oriented
programming languages. In COP ’09: International
Workshop on Context-Oriented Programming, pages
1-6, New York, NY, USA, 2009. ACM.

M. Appeltauer, R. Hirschfeld, M. Haupt, and

H. Masuhara. Contextj: Context-oriented
programming with java. In Proceedings of the JSSST
Annual Conference 2009, Shimane University, Matsue,
Shimane, Japan, September 16, 2009.

M. Appeltauer, R. Hirschfeld, and H. Masuhara.
Improving the development of context-dependent java
applications with contextj. In International Workshop
on Context-Oriented Programming, COP 09, pages
5:1-5:5, New York, NY, USA, 2009. ACM.

M. Appeltauer, R. Hirschfeld, and T. Rho. Dedicated
programming support for context-aware ubiquitous
applications. In Proceedings of the 2008 The Second
International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, pages
38-43, Washington, DC, USA, 2008. IEEE Computer
Society.

L. Baresi and G. Tamburrelli. Loose compositions for
autonomic systems. In C. Pautasso and E. Tanter,
editors, Software Composition, volume 4954 of Lecture
Notes in Computer Science, pages 165—-172. Springer
Berlin / Heidelberg, 2008.

G. Bracha and W. Cook. Mixin-based inheritance. In
Proc. OOPSLA’90, pages 303-311. ACM Press, 1990.
B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and

J. Magee. Software engineering for self-adaptive
systems: A research road map. In Dagstuhl Seminar
Proceedings, volume 8031. Springer, 2008.

P. Costanza. Language constructs for context-oriented
programming. In In Proceedings of the Dynamic
Languages Symposium, pages 1-10. ACM Press, 2005.
J. Dowling, T. Schifer, V. Cahill, P. Haraszti, and

B. Redmond. Using reflection to support dynamic
adaptation of system software: A case study driven
evaluation. In Proceedings of the 1st OOPSLA
Workshop on Reflection and Software Engineering:
Reflection and Software Engineering, Papers from
OORaSE 1999, pages 169-188, London, UK, 2000.
Springer-Verlag.

M. Engel and B. Freisleben. Supporting autonomic
computing functionality via dynamic operating system
kernel aspects. In Proceedings of the 4th international
conference on Aspect-oriented software development,
AOSD ’05, pages 51-62, New York, NY, USA, 2005.
ACM.

D. Garlan, S. Cheng, A. Huang, B. Schmerl, and

P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.

(19]

(20]

(21]

(22]

23]

(24]

(25]

(26]

27]

28]

29]

30]

(31]

Computer, 37(10):46-54, 2004.

C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming language support to context-aware
adaptation - a case-study with Erlang. Software
Engineering for Adaptive and Self-Managing Systems,
International Workshop, ICSE 2010.

P. Greenwood and L. Blair. L.: Using dynamic
aspect-oriented programming to implement an
autonomic system. Technical report, Proceedings of
the 2003 Dynamic Aspect Workshop (DAWO04 2003),
RIACS.

R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3), Mar. 2008.

P. Maes. Concepts and experiments in computational
reflection. In Conference proceedings on
Object-oriented programming systems, languages and
applications, OOPSLA ’87, pages 147-155, New York,
NY, USA, 1987. ACM.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and

B. H. C. Cheng. Composing adaptive software.
Computer, 37:56—64, July 2004.

P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
ICSE ’98: Proceedings of the 20th international
conference on Software engineering, pages 177-186,
Washington, DC, USA, 1998. IEEE Computer Society.
A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Proceedings of the 1st international conference on
Aspect-oriented software development, AOSD ’02,
pages 141-147, New York, NY, USA, 2002. ACM.

H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In J. Vitek, editor,
ECOOP 2008 — Object-Oriented Programming: 22nd
European Conference, Paphos, Cyprus, volume 5142 of
Lecture Notes in Computer Science, pages 155-179,
Berlin, July 2008. Springer-Verlag.

S. M. Sadjadi, P. K. McKinley, and B. H. C. Cheng.
Transparent shaping of existing software to support
pervasive and autonomic computing. In Proceedings of
the 2005 workshop on Design and evolution of
autonomic application software, DEAS 05, pages 1-7,
New York, NY, USA, 2005. ACM.

S. M. Sadjadi, P. K. Mckinley, B. H. C. Cheng, and
R. E. K. Stirewalt. TRAP/J: Transparent generation
of adaptable java programs. In In Proceedings of the
International Symposium on Distributed Objects and
Applications (DOA’04), Agia, 2004.

D. Sykes, W. Heaven, J. Magee, and J. Kramer. From
goals to components: a combined approach to
self-management. In SEAMS ’08: Softw. eng. for
adaptive and self-managing systems, pages 1-8, New
York, NY, USA, 2008. ACM.

R. N. Taylor, N. Medvidovic, and P. Oreizy.
Architectural styles for runtime software adaptation.
In WICSA/ECSA 09, 2009.

M. von Lowis, M. Denker, and O. Nierstrasz.
Context-oriented programming: Beyond layers. In
Proceedings of the 2007 International Conference on
Dynamic Languages (ICDL 2007), pages 143-156.
ACM Digital Library, 2007.

