Programming with Implicit Flows

Guido Salvaneschi'!, Mira Mezini!, and Patrick Eugster®!
!Department of Computer Science, Technische Universitit Darmstadt, Germany
{salvaneschi,mezini}@cs.tu-darmstadt.de
2Department of Computer Science, Purdue University, USA

p@cs.purdue.edu

Modern software differs significantly from traditional com-
puter applications that mostly process reasonably small
amounts of static input data-sets in batch mode. Modern soft-
ware increasingly processes massive amounts of data, whereby
it is also often the case that new input data is produced and/or
existing data is modified on the fly. Consequently, program-
ming models that facilitate the development of such software
are emerging. What characterizes them is that data, respec-
tively changes thereof, implicitly flow through computation
modules. The software engineer declaratively defines compu-
tations as compositions of other computations without explic-
itly modeling how data should flow along dependency relations
between data producer and data consumer modules, letting the
runtime to automatically manage and optimize data flows.

Keywords: Reactive programming, event, stream, big data,
data-flow

We have come a long way since the early computer
systems which were painstakingly fed problem data-sets via
punch cards. Computer systems have become much more con-
venient to interact with and are able to process much larger
data-sets, which are kept in large-scale storage systems. How-
ever, computer systems are also much more commonly in-
volved in processing of data that is produced or modified in
an online fashion, as the program is executing, sometimes in a
perpetual manner. This is particularly the case in applications
which are specifically developed to react to real-world happen-
ings such as temperature changes or other environmental cues
captured through sensors.

The last decade has thus seen the advent of abstractions and
paradigms that support the development of reactive software.
Central to such approaches is the concept of event which cap-
tures dynamic occurrences that trigger computations. Over the
years, several steps have been made in this direction, including
language-level support for events, continuous time-changing
values (a.k.a. signals or behaviors), constraints, asynchronous
execution and futures. The ever-increasing complexity of reac-
tive applications has recently raised new interest around these
abstractions. The new paradigm of reactive programming fo-
cuses on a more holistic view that demands for seamless inte-
gration of existing solutions, including constraints resolution

to enforce functional dependencies, automatic updates of de-
pendent values, and interoperability among different reactive
abstractions such as signals and event streams. The goal is
to raise the abstraction level: Rather than explicitly reifying
events in the software, changes to values of variables are de-
tected and propagated through programs by re-computing the
values of all dependent variables implicitly, i.e., by the lan-
guage runtime.

Interestingly, a similar trend can be observed in recent big
data analysis software. Not too long ago, such programs were
typically perceived as resembling complex queries applied to
very large yet static data-sets. A host of programming lan-
guages and models have been proposed for such programs.
They mostly mix imperative and declarative traits to clearly
expose the order of a non-cyclic computation network, and are
centered on some form of data-structures conceptualizing the
current state of computation. Despite improvements in running
time of such analysis programs often due to parallel execution
over powerful computation environments, their execution can
still take sufficiently long to make repeated complete execu-
tions of the same program upon additions or changes to the un-
derlying big data-sets prohibitively expensive. Consequently,
recent improvements consist in enabling incremental computa-
tions, i.e., re-executing only those parts of queries that become
invalid or incomplete by changes to analyzed data-sets.

While reactive and big data analysis applications have little
in common at first glance, we observe a shared trend in the
respective programming models: they strive to capture what
the computation ought to do, but not when (and how) it shall
do so, as the data which is subject to the computation changes
over time (thus we speak of “data-flows”). It is the execution
engines and language runtimes that increasingly carry the bur-
den of determining which parts of computations are affected by
which fluctuations in the processed data. As it is unlikely that
runtime systems can determine these things entirely on their
own — at least in an efficient manner — or that such trans-
parency would even serve the programmer, new abstractions
are needed to capture such implicit flows in addition to under-
lying runtime support.

In the following, we first overview the nature and origins of
reactive programming and big data analysis and implicit flows

therein. Next, we briefly touch on the state of the art and open
challenges towards a unified approach to programming with
implicit flows. Unification makes sense not only because of
the shared trend towards implicit flows. More importantly it
helps coping with the complexity of software that increasingly
combines features from both families of applications.

Events and Reactive Programming

Events are a common way for programmers to reason about
significant conditions in the environment and in the execution
of a program. Dedicated abstractions for events have been sup-
ported by some mainstream languages for a long time. For ex-
ample, in C#, events can be defined as class attributes beside
methods and fields and belong to a class’ interface. Over the
last few years, researchers have proposed increasingly sophis-
ticated event models (cf. Box “Avanced programming with
events”).

The integration into the object-oriented (OO) programming
model has been enhanced to extend OO concepts like inher-
itance to events and event handling. Early approaches like
JavapS [2] implemented events as specific objects. In ES-
cala [11] events are first-class entities. As in C#, they are ob-
ject attributes just like methods and fields; their definition is
subject to polymorphic access and late binding. Our investi-
gations [10] show that this is highly valuable, e.g., enabling
programmers to (a) encode the behavior of a class as a state
machine and (b) extend it at this high level of abstraction rather
than at the level of individual methods.

Events in isolation improve little over the observer design
pattern. The difference becomes crucial when expressive oper-
ators for event combination are available to correlate events to
define new (complex) events that capture high-level situations
of interest. Advanced systems support operators to combine
events with increasing levels of expressiveness. For example,
the e ||e2 expression in EScala returns an event that fires when
either e; or e, fires. Full-fledged embeddings of complex event
processing like EventJava [3], or stream processing languages
like SPL [5], support complex queries over event streams in-
cluding time windows and joins.

In parallel to the development of richer event models, other
researchers focused on more inherent data-flow and change-
driven solutions for reactive applications. These approaches
have old roots. For example, the Garnet and Amulet graphical
toolkits [12] support automatic constraint resolution to relieve
the programmer from manual updates of the view. In func-
tional reactive programming (FRP) [1] developers specify the
functional dependencies among time-changing values in a re-
active application and the language runtime is responsible for
performing the necessary updates (cf. Box “Reactive program-
ming and languages”). FRP has been developed in the strict
functional language Haskell and initially applied to graphical
animations. The paradigm has been applied to other fields in-

cluding robotics and wireless sensor networks.

The fundamental concept in reactive languages is that pro-
grammers do not directly handle the control flow but the ex-
ecution is driven by the implicit flow of data and the need to
update values. Concretely, programmers specify constraints
that express functional dependencies among values in the ap-
plication, and the language runtime enforces these constraints
without any further effort from the programmer.

More recently, these approaches have inspired many embed-
dings of DSLs and functional constraints in existing (impera-
tive) programming languages. The advantage of this solution is
that programmers specify a functional dependency in an intu-
itive, declarative way. As a consequence, reactions are directly
expressed, do not need to be inferred from the control flow, and
can be easily composed.

In practice, (continuous) time-changing values, a.k.a. sig-
nals, are not enough. The need for events (i.e., discrete time-
changing values) is explained by two observations.

(a) Events come from external phenomena that are inherently
discrete, such as an interrupt or new data from a sensor.

(b) Events are better suited for modeling certain behaviors: in
principle a mouse click can be modeled as a boolean con-
tinuous time-changing value that switches to true when
the mouse is clicked, but most programmers would rather
think of a mouse click as an event. For this reason, exist-
ing reactive languages provide both signals and events.

Reactive programming is an emerging trend and identifying
the boundaries of this field is hard. However, the following
principles seem valid in general.

e Declarative style. Reactive behavior is defined in a direct,
convenient, declarative style instead of encoding it in de-
sign patterns or through imperative updates of program
state. Reactions are directly expressed and do not need to
be encoded into the control flow of the program.

e Composition. Abstractions allow for composition of more
complex reactions. Traditional OO applications express
reactions in callbacks that are executed when an observ-
able changes. However, callbacks typically perform side
effects to modify the state of the application but do not
return a value. As a result, they are hard to combine. In-
stead, events can be combined through combinators, and
signals can be combined directly into more complex reac-
tive expressions.

e Automation. Programmer effort is reduced by delegating
the responsibility of reacting to changes in program state
and updating corresponding entities to the language run-
time. This solution has several advantages. Reactive code
is less error-prone because programmers do not forget to
update dependencies (which introduces inconsistencies)
and do not update defensively, independently of necessity

Advanced programming with events

Event-based languages include Join Java [1], which captures
events by specific asynchronous methods and supports join-
ing of multiple events, and Ptolemy [3] that supports fea-
tures known from aspect-oriented programming (AOP) [2].
In AOP, advices are triggered at points in the execution of the
program (e.g., the end of a method call) that are referred to as
join points. Join points can be seen as events that occur dur-
ing the execution and treated uniformly with other events. For
example, EScala before (method) and after (method) events
are triggered before and after the execution of methods.Also,
in event-based languages that integrate AOP features, pro-
grammers can refer to all events of a certain type, a feature
that resembles AOP quantification.
As an example of an expressive event system, we show a slice
of a drawing application in EScala.

| abstract class Figure { ...

2 protected evt moved[Unit] = after(moveBy)

3 evt resized[Unit]

4 evt changed[Unit] = resized || moved || after(setColor)
5 evt invalidated[Rectangle] = changed.map(() => getBounds())

7 def moveBy(dx: Int, dy: Int) { position.move(dx, dy) }
8 def setColor(col: Color) { color = col }
9 def getBounds(): Rectangle

10 }

11 class Rectangle extends Figure {

12 evt resized[Unit] = after(resize) || after(setBounds)

13 override evt moved[Unit] = super.moved || after(setBounds)

15 def resize(size: Size) { this.size = size }

:: }def setBounds(x1: Int, yi: Int, x2: Int, y2: Int) { ... }
Implicit events, like the after (moveBy) in the Figure class,
are automatically triggered at the end of the execution of the
associated method (moveBy in this case). Events can be de-
fined declaratively by event expressions: the event changed
is triggered when one of the events resized, moved, or
after(setColor) is triggered. EScala events integrate with
objects in several ways. Events support visibility modifiers,

abstract events, like resized, can be refined in subclasses.
Events can be overridden in subclasses (like moved) and the
inherited definitions can be accessed by super. Finally events
are late-bound: In the expression £ .changed the definition of
changed in Figure or in Rectangle can be picked up depend-
ing on the dynamic type of £.

JEScala [4] extends EScala to include asynchronous events
and joins like Join Java and EventJava. Join expressions fire
an event after two or more events combined by & occur in any
order. Multiple joins can be combined in disjunctions using
the | operator; when multiple joins fire inside the same dis-
junction, one is chosen non-deterministically. Joins offer an
alternative to thread-based concurrency. In the following Ac-
tor example, messages are asynchronous events (Lines 2-3).
A disjunction (Line 9) ensures that a single message is pro-
cessed at a time.

class Actor {
async evt helloMsg[Unit] = ...
async evt byeMsg[Unit] = ...

1
2

3

4

5 sync evt threadReady[Unit]

6 async evt start[Unit]

7 start += {while(true){threadReady()}}
8

9

evt (doHelloMsg,doByeMsg) = (threadReady & helloMsg)
10 | (threadReady & byeMsg)
11 doHelloMsg += { println("Hello")}
12 doByeMsg += ...

13}

References

[1] S. V. Itzstein and D. Kearney. The Expression of Common Concurrency
Patterns in Join Java. In PDPTA, 2004.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP,
1997.

[3] H. Rajan and G. T. Leavens. Ptolemy: A Language with Quantified,
Typed Events. In ECOOP, 2008.

[4] J. M. Van Ham, G. Salvaneschi, M. Mezini, and J. Noyé. JEScala:
Modular Coordination with Declarative Events and Joins. In MODU-
LARITY, 2014.

(which wastes computational resources). In addition, au-
tomation enables optimization and more automated mem-
ory management.

o [nteroperability. Different reactive abstractions can inter-
operate. Converting events into signals and back has an
important role in practice. Several existing OO applica-
tions model state as object fields that are imperatively up-
dated. Conversions allow programmers to take advantage
of the design based on signals still preserving compatibil-
ity with the existing non-functional code and the event-
based design of many applications.

Big Data Analysis

Technologies spearheaded mostly by Google’s efforts such as
the Google File System (GFS) [4] distributed file system or
the distributed implementation of the MapReduce framework
originally introduced in the Lisp programming language have
ushered in a new area of scalable computing. Through Apache
open-source versions of such systems, bundled under the name
Hadoopl, these technologies have become widely available;
they are currently considered part of the standard toolkit for
programming with big data. GFS or Hadoop distributed file
System (HDFS) achieve scalability essentially by restricting
write operations on files from arbitrary updates to append-only
writes. HDFS serves as the default storage medium for data

'http://hadoop.apache.org/

Reactive programming and languages

Reactive programming is based on constraints enforced by the
language runtime. Consider a functional dependency among
the variables a, b and c such thata = b + c.

1 a=2 1 a=2

2 b=3 2 b=3

3 c=a+hb 3 ¢ :=a+ b // constraint
4 a=4//c is still 5 4 a=4//c=7
sc=a+b//c=7 5

In imperative programming (left), the functional dependency
is satisfied only immediately after the execution of the state-
ment in Line 3. As soon as a change occurs, the functional
dependency is no longer valid and must be updated manu-
ally (Line 5). Reactive languages (right) automatically en-
force constraints (Line 3) recomputing functional dependen-
cies when they are not valid anymore.

As an illustration of more explicit use of constraints consider
the following minimal GUI application in the REScala [4] re-
active language, which counts mouse clicks on a button and
displays the result. In REScala, signals express functional de-
pendencies in a declarative style.

The traditional design, without reactive programming, for
such application adopts the observer design pattern. An im-
plementation (simplified for the presentation) using the Scala
Swing libraries looks like the following:

/* Create the graphics */

Reactive Swing App

1

2 title = "Reactive Swing App"

3 val button = new Button {

4 text = "Click me!"

: } No button clicks registered
6 val label = new Label {

7 text = "No button clicks registered"

8

9 contents =

10 new BoxPanel(Orientation.Vertical) {
11 contents += button

12 contents += label

13}

14 /* The logic x/

15 listenTo(button)

16 var nClicks = 0

17 reactions += {

18 case ButtonClicked(b) =>
19 nClicks += 1

20 label.text =

Reactive Swing App

Click me again

2 button clicks registered

21 "Number of button clicks: " + nClicks
22 if (nClicks > 0)

23 button.text = "Click me again"

24 }

The previous code requires inspecting the whole control flow
to understand the update logic. For example, the text over the
button is initialized in Line 4 and assigned in the statement in
Line 23. Line 23 is conditionally executed based on variable
nClicks, modified in Line 19.

In the reactive programming version using REScala, the
whole update logic is captured in Lines 5-11:

1 title = "Reactive Swing App"

2 val label = new ReactiveLabel

3 val button = new ReactiveButton
4

5 val nClicks = button.clicked.count
6 label.text = Signal{

7 (if (nClicks() == 0) "No"

8 else nClicks()) + " button clicks registered" }
9 button.text = Signal{

10 "Click me" + (if (nClicks() == 0) "!"

11 else " again ") }

12 contents = new BoxPanel(Orientation.Vertical) {
13 contents += button

14 contents += label

15 }

In reactive languages, conversions between signals and events
assume great importance. Conversions allow one to introduce
signal-based (declarative) code into OO event-based applica-
tions, abstract over state, and concisely express reactive com-
putations.

The following REScala code snippet uses the snapshot con-
version function to combine a signal that holds the current
mouse position and a click event from the mouse. As a result,
snapshot returns a signal that holds the position of the last
mouse click. The other example demonstrates the last(n)
function, that holds a list of the last n values associated to an
event stream. Here, last(n) computes the average in a slid-
ing window of five values over a stream of events carrying
integers.

1 val clicked: Event[Unit] = mouse.clicked
2 val position: Signal[(Int,Int)] = mouse.position
3 val lastClick: Signal[(Int,Int)] = position snapshot clicked

| val e = new ImperativeEvent [Double]

2 val window = e.last(5)

3 val mean = Signal { window().sum / window().length }

4 mean.changed += {println(.)}

Other reactive languages include FrTime [1], FlapJax [3] and
Scala.React [2]. Currently, reactive languages are being ex-
tended to support automated propagation of individual ele-
ments of non-trivial data-structures (e.g., lists [5]) or to dis-
tribution of reactive values over many nodes [6].

References

[1] G. H. Cooper and S. Krishnamurthi. Embedding Dynamic Dataflow in
a Call-by-Value Language. In ESOP, 2006.

[2] 1. Maier and M. Odersky. Deprecating the Observer Pattern with
Scala.react. Technical report, 2012.

[3] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: a Programming Lan-
guage for Ajax Applications. In OOPSLA, 2009.

[4] G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging be-
tween Object-Oriented and Functional Style in Reactive applications.
In MODULARITY, 2014.

[5] I. Maier and M. Odersky. Higher-order Reactive Programming with
Incremental Lists. In ECOOP, 2013.

G. Salvaneschi, J. Drechsler, and M. Mezini. Towards Distributed Re-
active Programming. In COOORDINATION, 2013.

[6

—_

handled by Hadoop MapReduce, or for results created by the
same. With a distributed file system used between MapReduce
tasks, many individual local disks used in between map and
reduce phases of such tasks, and several mappers and reduc-
ers splitting the workload, the MapReduce toolchain is able to
scale to very large input files.

To ease the burden on programmers, several high-level
scripting and programming languages/language extensions
have been introduced, which expose data-flow to enable par-
allelization. They view programs as directed acyclic graphs
(DAGs) with edges representing flow of data and nodes rep-
resenting (sets of) operations involving data from their in-
coming edges with results being passed onto outgoing edges.
Pig Latin [13] - an untyped scripting language proposed by
Yahoo - is a popular example of such a language. Hadoop Pig
implements it on top of Hadoop MapReduce. Languages like
Pig Latin are used to express data analysis jobs across domains
like science and engineering, business and finance, and govern-
ment and defense. In corresponding programs, intermediate
state is typically incarnated by various types of data-structures
or collections representing large data-sets, which computations
are applied to (cf. Box “Programming with big data™).

In general, languages for big data analysis roughly build
upon two abstractions:

1. Data-structures. The state of a DAG-based computa-
tion at a particular point in the DAG consists in interme-
diate data, which is conceptualized by a data-structure.
Constraints and characteristics of the data (e.g., order-
ing, indexing) are captured by the specific choice of data-
structure (e.g., bag vs. set, set vs. associative map).
Pig Latin e.g., leverages bags and maps, while others pro-
pose collections and tables (cf. Box “Programming with
big data”).

2. Operations and functions. Computation itself is ex-
pressed via operations more typical of relational query
models (e.g., filter, group, join) or functions (e.g., max,
min, avg), which are applied to data-structures; results
are typically represented again as data-structures.

When data analysis programs or sub-programs are translated
to MapReduce jobs, the actual data-structures will never be
incarnated as such in a given process’ address space, or even
across several such address spaces; these data-structures serve
uniquely as conceptual abstractions.

Restricting big data analysis and processing to computa-
tions that can be represented as DAGs is a strong limitation.
Two major extensions of the computational model promoted
by MapReduce and its associated early high-level languages to
address this limitation include:

e [ncremental computation. Support for such computation
avoids that upon changes to input data-sets of big data
analysis the entire programs have to be re-executed. In-
cremental computation is particularly sensible in the con-

text of big data — many applications operate on input data-
sets such as logs, client activity records, or user records
that are constantly extended. Based on the append-only
semantics for many such files (by virtue of the distributed
file system, e.g., HDFS), extensions to data-sets are natu-
rally captured by stratified appendages.

e [terative computation. Supporting cycles in computations
allows for a far more expressive computing model and
is similarly relevant in big data processing where often
times, due to the shier size of data, “one-shot” solutions
are impossible and computations are iterated until they
converge satisfactorily. A popular example is Google’s
page rank for determining popularity of web pages used
originally as motivation for MapReduce, implemented in
that context simply through repeated MapReduce stages.
Other examples include many machine learning algo-
rithms such as logistic regression.

Based on these needs, recent programming models (cf. Box
“Programming with big data”) aim at supporting either itera-
tive or incremental computing, or both. To that end, data-sets
are kept in main memory, partitioned across a number of nodes
necessary to accommodate them, thus making cross-accesses
for updates much faster than on stored files as promoted by
disk-based systems such as MapReduce.

Towards Unified Programming with Im-
plicit Flows

State of the union. The two families of programming lan-
guages/language extensions considered in the previous sec-
tions share a new paradigm of processing data (changes): im-
plicit flows of data (changes) “through” computations. While
the two thrusts currently still emphasize different settings and
requirements — low-latency in-memory processing on one or
few nodes with small data volumes for reactive programming,
and high throughput processing of large data-sets distributed
across many nodes for big data analysis — confluences are
starting to emerge:

1. Approaches in each family are being extended with fea-
tures characteristic for the other family: implicit propaga-
tion of changes in reactive programming is being general-
ized from simple values to data collections and from local
to distributed computations; support for incremental and
iterative computations is being added to big data analytics
approaches.

2. Approaches with uniform abstractions for processing het-
erogeneous stored and online data sources are emerg-
ing: the reactive extensions (Rx) [7] of .NET repre-
sent a library-based approach to modeling complex even-
t/stream processing by LINQ [8] operators, which are also
used for stored data processing; following DEDUCE [6],

Programming with big data

Several programming languages and models are similar in
spirit to Pig Latin. FlumeJava [3] is a library for data-flow
processing in Java proposed by Google, and implemented also
by Apache Crunch [1]. FlumeJava compiles corresponding
tasks to MapReduce jobs at runtime. Like the early Dryad [5]
language or Pig Latin, the model comes with standard opera-
tors for joining data flows etc., but supports also application-
defined functions. The following implements a simple word
count in FlumeJava:

1 PCollection<String> lines =

2 readTextFileCollection(input_file);

3 PCollection<String> words = lines.parallelDo(

4 new LineToWordFunction<String, String>(),

5 collectionOf (strings()));

6

7

PTable<String, Long> wordCounts = words.count();
wordCounts.write(output_file);

First the program reads the input_file as a text file, and
then, with some degree of parallelization chosen by the run-
time, parses lines, generating a collection of strings. Next the
program creates a table indexed by words, with the counts
for the respective words, before, finally, writing the table to
output_file.

Early innovators in terms of incremental and iterative com-
putation were the Incoop [2] and iHadoop [4] extensions of
Hadoop respectively. Recent examples of data processing
models supporting these two features by storing data in main
memory include distributed arrays in Presto [6] or resilient
distributed datasets in Spark [7]. Incremental computation is

thus far not supported by FlumeJava or Crunch; in the word
count example above, incremental computation would consist
in augmenting the word counts output to output_file follow-
ing the order of the program, upon extensions to input_file.
With an in-memory representation of the wordCounts table, it
would suffice to apply the previous stages to any lines added
to input_file, and subsequently adding the corresponding
new word counts to existing ones in wordCounts, or and creat-
ing new entries to the table for words which were previously
not encountered.

References

[1] Apache Software Foundation. Incubator Crunch. http://
incubator.apache.org/projects/crunch.html.

[2] P. Bhatotia, A. Wieder, R. Rodrigues, U. Acar, and R. Pasquin. Incoop:
MapReduce for Incremental Computations. In SOCC, 2011.

[3] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumelJava: Easy, Efficient Data-parallel
Pipelines. In PLDI, 2010.

[4] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous It-
erations for MapReduce. In CLOUDCOM, 2011.

[5S] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks.
SIGOPS Oper. Syst. Rev., 41:59-72, March 2007.

[6] S. Venkataraman, I. Roy, A. AuYoung, and R. Schreiber. Using R for
Iterative and Incremental Processing. In HotClouds, 2012.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: a
Fault-Tolerant Abstraction for In-memory Cluster Computing. In NSDI,
2012.

Shark [14] combines MapReduce, designed for analysis
of stored data, with support for processing online data.

Outlook. Beside these first steps there is a need for a much
stronger confluence. We believe that modern applications
would benefit from integration of time changing values a.k.a.
signals and big data processing abstractions, making these
composable. To enable such compositions we need to con-
ciliate propagation of changes on immutable data in the style
of FRP and propagation of changes on mutable data character-
istic for big data processing. Fine-grained changes over mu-
table data structures is an instance of a more general problem:
further advances in incrementalization techniques are required.
These have been studied for a long time in the database com-
munity under the label of view maintenance. More recently, in-
cremental solutions have been applied to specific programming
domains, e.g., incremental collections. However, attempts to
incrementalize a generic program are just at the beginning.
Beside incrementalization, language integration of uniform ab-
stractions for implicit data flows may enable optimizations ac-
cross data-flow graphs and offers opportunities for applying
typical compiler optimizations such as inlining, partial evalua-
tion and staging, loop fusion, and deforestation.

Finally, the integration of reactive programming and big data
analysis poses a number of challenges concerning the com-
position of heterogeneous data management and processing
strategies. This may require advanced module concepts and
related type systems to enable expressing functionality that ab-
stracts over a whole range of processing strategies as well as
different data sources/sinks. A key challenge is to reconcile
flexibility with static typing to reduce runtime errors. This as-
pect is especially important in the context of big data where a
failure can propagate across dependent computations and in-
validate processing already performed.

Acknowledgments

This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under grant No.
16BY1206E, by the European Research Council, grant No.
321217, the Alexander von Humboldt foundation, and the
US Defense Advanced Research Projects Agency grant No.
#N11AP20014.

About the Authors

Guido Salvaneschi is a postdoctoral researcher at TU Darm-
stadt. He is interested in programming languages, reactive pro-
gramming, event-based programming and languages for adap-
tive systems. He holds M.S. and Ph.D. degrees from Politec-
nico di Milano.

Mira Mezini received the diploma degree in computer sci-
ence from the University of Tirana, Albania, and the PhD de-
gree in computer science from the University of Siegen, Ger-
many. She is a professor of computer science at the Tech-
nische Universitidt Darmstadt, Germany, where she heads the
Software Technology Lab.

Patrick Eugster is an associate professor in computer sci-
ence at Purdue University on leave at TU Darmstadt, interested
in distributed systems and programming languages. He holds
M.S. and Ph.D. degrees from EPFL. Patrick is a recipient of a
NSF CAREER award (2007) and an ERC Consolidator award
(2012), and is a member of DARPA’s Computer Science Study
Panel (2011).

References

[1] C. Elliott and P. Hudak. Functional Reactive Animation. In ICFP, 1997.

[2] P. Eugster and R. Guerraoui. Distributed Programming with Typed
Events. IEEE Software, 21(2): 56-64, 2004.

[3] P. Eugster and K. Jayaram. EventJava: An Extension of Java for Event
Correlation. In ECOOP, 2009.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In
SOSP, 2003.

[5] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. P. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K.-L.
Wu. IBM Streams Processing Language: Analyzing Big Data in Motion.
IBM Journal of Research and Development, 57(3/4), 2013.

[6] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu. DEDUCE: at the Inter-
section of MapReduce and Stream Processing. In EDBT, 2010.

[7] J. Liberty and P. Betts. Programming Reactive Extensions and LINQ.
Apress, st edition, 2011.

[8] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object,
Relations and XML in the .Net Framework. In SIGMOD, 2006.

[9] E. Meijer and G. Bierman. A Co-relational Model of Data for Large
Shared Data Banks. Communications of the ACM, 54:49-58, Apr. 2011.

[10] G. Salvaneschi and M. Mezini. Towards reactive programming for
object-oriented applications. Transactions on Aspect-Oriented Software
Development XI , 2014.

[11] V. Gasiunas, L. Satabin, M. Mezini, A. Nifiez, and J. Noyé. EScala:
Modular Event-driven Object Interactions in Scala. In AOSD, 2011.

[12] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Faulring,
B. D. Kyle, A. Mickish, A. Klimovitski, and P. Doane. The Amulet
Environment: New Models for Effective User Interface Software Devel-
opment. /EEE Trans. Softw. Eng., 23(6):347-365, June 1997.

[13] C.Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A Not-so-foreign Language for Data Processing. In SIGMOD, 2008.

[14] R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, and I. Stoica.
Shark: SQL and Rich Analytics at Scale. In SIGMOD, 2013.

[15] T. Uustalu and V. Vene. The Essence of Dataflow Programming. In
APLAS, 2005.

