
Science of Computer Programming 102 (2015) 20–43
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

ContextErlang: A language for distributed context-aware

self-adaptive applications ✩

Guido Salvaneschi a,∗, Carlo Ghezzi b, Matteo Pradella b

a Software Technology Group, TU Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany
b DEEPSE Group, DEIB, Politecnico di Milano, Piazza L. Da Vinci, 32, 20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2013
Received in revised form 27 October 2014
Accepted 6 November 2014
Available online 11 December 2014

Keywords:
Context-oriented programming
Context
Self-adaptive software
Concurrency
Distribution

Self-adaptive software modifies its behavior at run time to satisfy changing requirements in
a dynamic environment. Context-oriented programming (COP) has been recently proposed
as a specialized programming paradigm for context-aware and adaptive systems. COP
mostly focuses on run time adaptation of the application’s behavior by supporting modular
descriptions of behavioral variations. However, self-adaptive applications must satisfy
additional requirements, such as distribution and concurrency, support for unforeseen
changes and enforcement of correct behavior in the presence of dynamic change.
Addressing these issues at the language level requires a holistic design that covers all
aspects and takes into account the possibly cumbersome interaction of those features, for
example concurrency and dynamic change.
We present ContextErlang, a COP programming language in which adaptive abstractions
are seamlessly integrated with distribution and concurrency. We define ContextErlang’s
formal semantics, validated through an executable prototype, and we show how it supports
formal proofs that the language design ensures satisfaction of certain safety requirements.
We provide empirical evidence that ContextErlang is an effective solution through case
studies and a performance assessment. We also show how the same design principles
that lead to the development of ContextErlang can be followed to systematically design
contextual extensions of other languages. A concrete example is presented concerning
ContextScala.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Self-adaptive software [2] is capable of adapting to different conditions to satisfy changing requirements. This feature is
necessary when applications operate in environments that change dynamically. Sources of change include spatial positions of
moving hosts, which may in addition join and leave the network dynamically, variable connectivity conditions, and changing
load to meet fluctuating usage profiles. The need for addressing those conditions has become more common with the
widespread use of mobile devices, the availability of distributed cooperative applications, and more generally the increased
complexity of computing systems. In the attempt to tackle such problems, in the last few years, autonomic computing has
been extensively investigated by researchers [3]. Autonomic computing starts from the assumption that the complexity of

✩ This paper is an extended version of a preliminary conference paper [1].

* Corresponding author.
E-mail addresses: salvaneschi@st.informatik.tu-darmstadt.de (G. Salvaneschi), carlo.ghezzi@polimi.it (C. Ghezzi), matteo.pradella@polimi.it (M. Pradella).
http://dx.doi.org/10.1016/j.scico.2014.11.016
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.11.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:salvaneschi@st.informatik.tu-darmstadt.de
mailto:carlo.ghezzi@polimi.it
mailto:matteo.pradella@polimi.it
http://dx.doi.org/10.1016/j.scico.2014.11.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.11.016&domain=pdf

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 21
computing systems is growing up to a point that human support is not sufficient any more and systems must self-adapt to
meet their requirements with limited or no human supervision.

The characterizing feature of self-adaptive software is that the behavior of the application must change dynamically in
response to different external and internal conditions. This goal can be achieved in different ways. Traditional solutions
address the problem at the software architecture and middleware levels [4–6]. More recently, researchers proposed context-
oriented programming (COP) as a dedicated paradigm to support dynamic software adaptation [7]. COP provides abstractions
that are specifically designed for run time change and adaptation, supporting modularization and disciplined dynamic com-
position of behavioral variations, which constitute a crosscutting concern. In addition, COP relieves programmers of the
need to implement at the machinery required to support dynamic change. As a result, COP solutions are less verbose, and,
thanks to commonly accepted abstractions, clearly express the design intentions, which would otherwise be hidden in ad
hoc solutions.

Current COP languages focus on modularization of behavioral variations and their dynamic activation [8]. However, in a
real-world self-adaptive system, a whole spectrum of additional requirements must be considered. For example, real-world
adaptive systems are often distributed. In this scenario, concurrent components run in parallel and may need to adapt to
different context conditions. Different contexts can be active at the same time in different regions of the system. Since some
components are dedicated to gathering contextual conditions via sensors, they must be able to trigger behavioral change on
other components. Asynchronous communication simplifies the design of complex systems, so it is desirable that activation
of behavioral variations is performed by an asynchronous mechanism. Another crucial aspect is that when an application
runs in a highly dynamic environment, it must be ensured that behavioral changes activated on the application do not
conflict, leading to inconsistent behavior. Finally, adaptations can be hard to foresee upfront and mechanisms for dynamic
loading of new variations must be provided.

Supporting all these requirements is not easy. For example dynamic change and concurrency can easily lead to incon-
sistencies. In addition, the activation mechanism should seamlessly interact with distribution to support remote adaptation.
Finally, the scope of context adaptation must be compatible with the organization of the distributed system. In summary, it
is not possible to support these requirements by offering separate independent features; a comprehensive coherent design
is instead required to tackle these issues.

ContextErlang
1 is a COP language that addresses the aforementioned requirements of self-adaptive applications. Specifi-

cally, we leverage the agent-based model of Erlang2 to support context adaptations. ContextErlang is based on the concept
of context-aware reactive agents. Context-aware agents have a basic behavior which can be altered by variations, i.e., be-
havioral units that can be dynamically activated on the agent. The composition of such variations determines the actual
behavior of the agent. However, variations are not activated in isolation. Instead, an abstract data type specified by the
programmer controls the composition and introduces constraints that avoid possible conflicts. Variation activation and
the other context-related operations are performed by sending special messages to the agent. Therefore, in ContextErlang,
asynchronous activation – as required by real-world adaptive systems – is the norm. Since the programmer can enable adap-
tations at the granularity of single agents, she has full control over fine-grained adaptation of each application component.
Context-aware agents and the messaging mechanism are compatible with existing Erlang applications since we developed
ContextErlang as part of the Open Telecom Platform (OTP), on which practically any real-world Erlang application is based.
As a result, ContextErlang applications inherit the distribution and the fault-tolerance support of OTP. In addition, ContextEr-

lang supports variation transmission: an agent on a remote Erlang node can be provided with a new behavior by sending a
variation to the node and activating it on the agent. This solution is needed for systems that must adapt to unforeseen situ-
ations. Since concurrency, in the presence of dynamic change can easily lead to inconsistencies, we formalize ContextErlang

with a minimal calculus that defines its semantics and the behavior of the language in all circumstances.
In summary, the paper makes the following contributions:

• Introduction of COP in the Actor concurrency model through the design of ContextErlang.
• A complete implementation of ContextErlang as part of Erlang OTP, an industrial-strength language for distributed,

concurrent and fault-tolerant applications.
• A formalization of the core language with an operational semantics that validates its key design principles.
• Experimental validation and evaluation of our approach through performance comparison and prototypes, among which

ContextScala, a complete implementation of another language sharing the same principles and semantics of ContextEr-

lang.

A preliminary version of this work focused on the informal integration of COP with the Actor model [1]. This paper is a
comprehensive overview of how ContextErlang meets the requirements of adaptive systems and includes a formalization of
the most important features of the language.

1 The implementation of ContextErlang and the software presented in the rest of the paper is available at: http://www.guidosalvaneschi.com.
2 http://www.erlang.org/.

http://www.guidosalvaneschi.com
http://www.erlang.org/

22 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
The paper is organized as follows. In Section 2 we outline the requirements of adaptive applications and discuss the
possible solutions. In Section 3 we present the design of ContextErlang, and in Section 4 its formal semantics. Section 5
presents the validation of our work. Section 6 discusses the related work and Section 7 draws some conclusions.

2. Adaptive software and COP

In this section, we discuss the requirements of self-adaptive systems on programming language support, we introduce the
main features of COP, and discuss how current COP languages only partially address the requirements and which problems
are still open. Finally, we sketch the ContextErlang solution that is detailed in the next section.

Compared to traditional applications, self-adaptive systems have specific requirements that must be considered by soft-
ware designers. Supporting these requirements is an important goal of the technology used to implement them. The main
requirements are:

• Dynamic adaptation. Software applications operate in an environment that changes frequently. For this reason, adaptive
software must provide mechanisms to dynamically modify its behavior depending on the changing conditions.

• Modularization of behavioral variation. Adaptive software can perform dynamic adaptation at different levels of abstrac-
tion [2]. For the purpose of this paper, a fundamental distinction is between parameter adaptation versus compositional
adaptation – according to the terminology introduced by McKinley et al. [9]. Adaptation at the parameter level means
that the same module is run with different input parameters. On the contrary, more complex adaptations that concern
behaviors, like alternative algorithms or modifications of the same algorithm, are more challenging because they often
crosscut the main organizing direction of the application and require proper modularization [10].

• Asynchronous variation activation. Adaptive systems are often modeled by the MAPE-K loop model (monitoring, analyzing,
planning, execution and global knowledge) proposed by the autonomic computing community [3]. An autonomic manager
controls a managed element to achieve the adaptive behavior. The autonomic manager collects information through
sensors and modifies the behavior of the system through effectors. In a complex system, the autonomic manager and the
managed element are not only conceptually separated, but they are also implemented as different components. When
the size of a systems grows, there can be several autonomic managers that observe different sensors and are responsible
for activating different adaptations. In this scenario, managed elements run independently of the autonomic managers
and must be asynchronously notified of behavioral changes.

• Constraints on variation composition. As already discussed, in adaptive systems behavioral variations are activated at run
time, possibly by different managers. In highly dynamic scenarios, several adaptations can be activated on the same
component, so the risk of inconsistencies among variations is concrete. For example, in a mobile application that adapts
to the presence of a Wi-Fi connection, the online and the offline variations should not be active at the same time.

• Support for unforeseen adaptation. Designers of adaptive software must equip the system with the functionalities required
to properly respond to the most diverse conditions. However, designers can hardly foresee all the adaptations that
can be needed when the system will become operational. The need for a new adaptation can be quite frequent due
to unpredictable changes in the environment and stopping the system to introduce the required functionality could
be unacceptable. For this reason, several adaptive systems adopt solutions that allow one to update the running code
without incurring in the downtime of stopping the system for recompilation. For example, Aspect Oriented Programming
(AOP) frameworks like PROSE [11,12] and JAC [13,14], support remote uploading and dynamic activation of aspect
components.

• Distribution. In computing systems, the need for adaptation is often mainly due to changing connectivity conditions
and environmental factors. Examples include changes in the physical location of mobile hosts, variability of network
bandwidth, and changes of requests and load from the clients. Given these factors, it is not surprising that, in most
scenarios, adaptive systems are distributed. As a result, run time adaptation must be designed also taking into account
remote communication and host decoupling.

2.1. Context-oriented programming

COP is an interesting starting point to meet the requirements outlined in the previous section since it supports dynamic
adaptation and modularization of behavioral variations. In this section, we provide a short introduction to COP. The reader
interested to a more general analysis and an overview of the existing COP languages can refer to the survey [8].

While in traditional OO programming method dispatching is two-dimensional, depending on the message and on the
receiver, COP adds a further dimension: methods may also be dispatched according to the current context [7]. In COP, the
notion of context is abstract and general. Every computationally accessible information can be considered as context. The user
condition (e.g., online/offline, enabled backup) can be considered its current context. Thanks to this approach, context can
be effectively used to model the variability required by adaptive systems.

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 23
COP provides ad hoc language-level abstractions to modularize context-dependent behavioral variations and dynamically
activate and combine them. In COP languages, behavioral variations are reified in layers,3 abstractions which group partial
method definitions. For example, the following class defines two partial method definitions for the method m inside the layers
l1 and l2.

class MyClass {
layer l2 {
void m() { System.out.println("m: l2"); proceed(); ...; }

}
layer l1 {
void m() { System.out.println("m: l1"); proceed(); ...; }

}
void m(){ ...; System.out.println("m"); }

}

Layers are activated through an explicit statement such as

with(layersList) {
codeBlock

}

and activation is scoped to the dynamic extent of the code block. When a method is called from codeBlock and partial
definitions are available for that method in the active layers, the partial definitions are executed. For example, the call m()
in

MyClass o = new MyClass()
with(l2,l1) {
o.m()

}
// output:
m: l2
m: l1
m

executes the partial definition of m inside the layer l2. In COP, the proceed keyword allows dynamic combination. It
is similar to proceed in Aspect-Oriented Programming (AOP) and calls the partial definition in the next active layer or
the basic definition. As a result, the partial definition of m inside l2 proceeds to the partial definition of m inside l1,
which finally proceeds to the execution of the basic behavior, i.e., method m. Thanks to the mechanism introduced by COP
for dynamic context activation and composition, run time adaptation is implemented without cluttering the code with if
statements to express context dependency.

In the following sections we will illustrate these concepts more thoroughly with a running example written in Contex-

tErlang.

2.2. The ContextChat case study

To illustrate the design choices behind our work, we introduce a running example called ContextChat, our prototype of
an instant messaging server. We discuss possible designs and implementations of ContextChat using existing COP languages
and ContextErlang. More details of the implementation will be presented along the paper to show ContextErlang’s features.

In ContextChat, the connected clients can exchange messages in real time. The server also implements some advanced
features, which can be dynamically activated. When users go offline, received messages are stored on the server and deliv-
ered later when the addressee connects. An optional backup can be enabled by the user to save both the received and sent
messages on a remote server. Additionally, the system can activate a tracing functionality to collect information on client
communications. In a distributed environment, this allows for self-adaptive behavior, moving users who often exchange
messages on the same physical machine and reducing cross-node communications.

An abstract view of the application is sketched in Fig. 1. For each user i an always-alive component Ui embodies the user
even when he or she is offline (e.g. U4). Border components Bi are created when clients Ci connect. Each border component
is in charge of the network connection with the client and controls the always-alive component. Consider the scenario in
which the client C1 sends a message to the client C2. C1 communicates the message to the border component (e.g. via
some protocol over HTTPS). The border component B1 decodes the “send_msg” command and controls U1. B1 activates the
send message functionality on U1. U1 forwards the message to U2 and through B2 the message reaches C2.

3 For continuity with our previous work, ContextErlang keeps the name variation also to indicate the language abstraction. ContextErlang variations
are quite similar to COP layers; a comparison between the two is in Section 6.

24 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
Fig. 1. The ContextChat application.

public class User {
layer offline {
void receive_msg(User source,M msg){
store_chats.store_message(source, msg);

} }
layer tracing { ...
void receive_msg(User source,M msg){
// send msg to the tracing listener
proceed(source, msg);

}
void send_msg(User source,M msg){
// send msg to the tracing listener
proceed(source, msg);

} }
layer backup { ...
void receive_msg(User source,M msg){
// send msg to the remote server
proceed(source, msg);

} }
... // Other methods

void receive_msg(User source,M msg){
//forward msg to my border component

}
void send_msg(User dest,M msg){
// forward to dest client

} }

Fig. 2. An implementation of the chat server in ContextJ.

2.3. The context-oriented programming solution

In ContextChat, the variations to the basic behavior are clearly identified, should be separated from the rest in the
codebase, must be dynamically activated, and depend on the current context of the application – as we explain in a while.
Therefore, COP looks like the natural solution for the requirements of ContextChat.

Fig. 2 shows a possible implementation of the User object implementing an Ui component in a COP language extension
to Java, such as ContextJ [15]. Layers are used to model partial behavioral variations. For example, in Fig. 2 the tracing
layer contains a partial definition of the receive_msg and of the send_msg methods. Method calls are dispatched
according to the active layers and proceed keyword allows dynamic combination of variations active at the same time.

Dynamic scope is a powerful mechanism for variations activation, since it allows remote effect, setting the active layers
once and automatically adapting all the objects in the execution flow. This behavior has already proved useful in several
application scenarios [15–17]. However, implementing ContextChat with the traditional COP dynamically scoped activation
highlights some inconveniences. We argue that these problems are due to the asynchronous nature of context provisioning,
to the concurrent nature of the application and to its non-trivial complexity. Therefore the issues analyzed next are likely to
be encountered in any sufficiently large self-adaptive application that needs to be organized in several functional modules,
and are not specific to this example.

First, a context change is often signaled by an asynchronous event coming from outside the execution flow. Since layers are
activated when the control flow reaches the statement, the with construct is inherently synchronous and is not suitable for
these cases. For example, the tracing layer is activated by an external engine in charge of implementing the autonomic
behavior. The same holds for the activation of the backup functionality, which can be performed anytime by the client
while User objects are exchanging messages with other users. A possible solution is to adopt inversion of control [18] and
first class layers. For example, a setActiveLayers callback method can be implemented in the User class to notify
the change of the active layers and store them locally. However, this solution increases the complexity of the application,
making it less readable. Indeed, in this case, inversion of control does not capture the design intention. Conceptually, the
programmer’s intention is to cause an entity adaptation and not to notify an entity letting it perform the activation at the

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 25
public class User {
void onStatusChanged(Status s){...}
...

}
direction UserLayerActivations{
declare event StatusOffline(User u)
:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.OFFLINE) :sendTo(u);
declare event StatusOnline(User u)
:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.ONLINE) :sendTo(u);
... // Other events
transition StatusOffline: Offline switchTo Online;
transition StatusOnline: Online switchTo Offline;
... // Other transitions

}

Fig. 3. ContextChat in EventCJ.

next with statement. In addition, in some applications, it is not possible to identify unique entry points for the control flow.
As already noticed by COP researchers [19], in these cases layer composition statements must be scattered and replicated
across all the possible control flows, such as all the callback methods in a GUI application.

Second, in a highly concurrent environment, the control flow can follow complex paths. These paths hardly map on
dynamically scoped program sections, i.e., contextual regions whose adaptation condition is known where the region is
entered. For example, the User object (Fig. 2) may be traversed by several control flows, and the information of which
behavioral variation to activate is not directly available to all of them. The backup functionality is enabled by the client C1
and therefore the associated border component B1 can trigger the backup behavior by interacting with the User object U1
in the dynamic scope of a with statement. However, when the User object U1 is called from another User object U2 to
receive a message, U2 does not know if the backup layer should be activated on U1.

A third issue is that in a complex application with several components, dynamic scope is difficult to control and could
extend too far. For example, when a border component B1 delivers a message through the associated User object U1 and
the client C1 activated the backup feature on U1, the backup functionality is propagated along the flow to the other User
object U2.

COP researchers have already investigated the limitations of dynamically scoped variation activation. ContextJS [20] is
an open implementation of COP supporting user-defined activation strategies, such as indefinite scope or per-object activa-
tion. Per-object activation is performed by calling a setWithLayer method on the instance. Per-object activation solves
the problem of the activation along the execution path, since objects identify the boundaries in which layer activation is
constrained. This solution nicely fits in the OO model, resembling the way other design problems have been solved for ob-
jects. For example, in Java, concurrency is addressed at the language level by assigning a monitor to each object. Similarly,
in per-object activation, a list of currently active layers is associated to each object. EventCJ [21] is a Java COP extension
supporting declarative layer transitions and implicit activation through pointcut-like predicates. The issue of asynchronous
activation, discussed previously, is solved by AspectJ-like statements: when a pointcut-like event occurs, a layer transition
is triggered. Layers are activated on per-object basis. Fig. 3 shows a possible implementation of a User object in EventCJ.
Events and layer transitions are declared inside direction modules. When the onStatusChanged method is called,
the StatusOffline or the StatusOnline events are triggered, depending on the parameters. These events trigger
layer transitions from Online to Offline and vice versa. The approach solves the problem of asynchronous activation by
introducing points in the program execution which implicitly activate layers.

However, none of the existing COP languages leverages the concurrency model to easily support asynchronous context
propagation. As a result, the layer activation mechanism can be quite complex, as shown by the example in Fig. 3.

As we have seen, the backup and the tracing functionalities in the example are activated by a different thread than the
one actually affected by them. This aspect is not peculiar of our example, but is common to many self-adaptive applications
designed according to the MAPE-K model, because the adaptive application is decoupled into a managed element, which
implements the application logic, and the autonomic manager, which collects data from sensors and plans the adaptive
behavior. So, these subsystems are not only conceptually separated, but usually run in separate threads and communi-
cate asynchronously. However, the relation between context-adaptation and the language concurrency model has not been
investigated so far in COP research. Even more advanced COP languages are quite traditional in this sense. ContextJS is
single-threaded, since it extends JavaScript, a single-threaded language. EventCJ instead adopts the standard Java share-
and-lock concurrency model. By exploiting the integration of COP with the Actor Model, ContextErlang directly addresses
the issue of context propagation in concurrent systems, and allows for asynchronous context provisioning directly in the
language, without pointcut-like expressions. This approach solves in a natural way the problem of context confinement by
adopting actors as context boundaries.

26 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
2.4. Overview of the ContextErlang solution

ContextErlang mainly differs from other COP languages in the way it supports the activation of context-specific function-
alities. To address the issue of asynchronous context provisioning, variations are activated through messages. This approach
nicely reflects the design intention and avoids the cluttering of control inversion. To cope with the complexity of a con-
current application organized in several behavioral units, in ContextErlang, variations are activated on per-agent basis, and
each agent can be controlled individually. This also eliminates the risk of unintended adaptation propagation. After activa-
tion, variations are implicitly associated with the agent. They are managed transparently and do not need dedicated local
variables or other boilerplate code.

To make the benefits of such design more concrete, hereafter we illustrate how ContextChat is designed in ContextErlang.
Always-alive components are context-aware agents (namely users) exchanging Erlang messages. Border components are
standard Erlang agents, since no special adaptation is required. The offline, online, backup and tracing variations
implement the dynamically activatable features for the user agents. Other agents can directly control the adaptation state
of a user agent. For example when a client Ci closes the connection, the border agent sends a context-related message to
the associated agent Ui , which has the effect of activating the offline variation. In a similar way Bi activates the backup
of the conversations and the autonomic engine activates the tracing variation. Active variations can be dynamically
combined to allow coexisting multiple adaptations. For example, the backup variation proceeds to either the online or
the offline variation to send a chat to a backup server and then either forward or store it locally.

ContextErlang provides a powerful feature: variation transmission. To illustrate it, we augment the ContextChat application
with an additional functionality. A client can apply a customizable filter to its outgoing messages such as capitalizing all
the first letters of sentences or adding emoticons to each message. Despite its simplicity, this feature is interesting because
the type of filter cannot be forecast in advance. In ContextErlang this kind of situation is specifically addressed by variation
transmission, which allows one to send a variation to a remote agent and dynamically load it. In this way the agent can
react to unforeseen situations.

Further insights into the details of the ContextChat implementation in ContextErlang are provided in the following sec-
tions.

3. The design of CONTEXTERLANG

3.1. Erlang and the Open Telecom Platform

To achieve the high quality standards of Erlang applications, ContextErlang is built on the OTP platform – a library and a
set of procedures for structuring fault-tolerant, large-scale, distributed software. To keep the paper reasonably self-contained,
we provide a minimal description of the Erlang syntax and a short introduction to the OTP.

While the language provides the basic functionalities for software development, practically any real-world Erlang ap-
plication is based on the OTP platform. The concept of behavior is central in OTP and is based on the idea that, in an
application, many processes enact similar patterns, such as serving requests, handling events, or monitoring other processes.
OTP generalizes these common patterns, and gives a ready implementation of the generic structure (called the behavior),
which provides features such as message passing, error handling and fault-tolerance. The user only needs to implement
the specific part in a callback module, which exposes a predefined interface. This kind of code structuring makes programs
easier to understand, and prescribes a general architecture that should be common to all OTP applications. In this paper we
use the term behavior also to indicate the way an agent behaves with respect to the software system. To avoid confusion,
when necessary, we will use the term OTP behavior to disambiguate.

In Fig. 4 we present a callback module for the most common OTP behavior, the gen_server, a process which stands
waiting for requests from other processes. An Erlang module starts with attributes introduced by “-”. They state the module
name, the exported functions and other declarations. The functions’ implementation follows. A function body is started by
“->”. Braces indicate tuples of fixed length, brackets indicate lists. Variables start with an uppercase letter, other literals
are atoms, i.e., literal constants. The ?MODULE literal macroexpands to the module name. In the example, the process
implements a cache that allows for adding and retrieving items. The gen_server process is spawned with the start
function. It is common practice in OTP that the callback hides the interaction with the behavior, providing an API to the
user. In this case, the callback exposes the get and the add functions that in turn interact with the spawned process. A call
to the get function invokes call on the gen_server module, which causes a message to be sent to the created process.
When the message is received, the corresponding callback function handle_call({get, Name}, From, State) is
invoked (note that this function is executed in a different process with respect to call). The returned result is sent back
through a message and the gen_server:call function ends. All the machinery associated with message passing, possible
message loss, timeout, and dispatching over callback functions, is hidden from the programmer. call functions are used for
synchronous messages expecting a return value, cast functions are asynchronous and do not return a value to the caller.

The OTP platform addresses several requirements of a distributed system. For example, agents can be organized in hier-
archies where supervisors (i.e., modules implementing the supervisor OTP behavior) can control other working agents,
be notified of failures, and adopt countermeasures. Another fundamental feature is that agents can be spawned on remote

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 27
-module(cache).
-behavior(gen_server).

...
start() ->
gen_server:start_link({local, ?MODULE},

?MODULE, [], []).
get(Name) -> gen_server:call(?MODULE, {get, Name}).
add(Name, Item) -> gen_server:cast(?MODULE, {add, Name, Item}).

init([]) ->
% ... initialization here
{ok, State}.

handle_call({get, Name}, From, State) ->
% ... retrieve Item from the state
Reply = Item, {reply, Reply, State}.

handle_cast({add, Name, Item}, State) ->
% ... add Item to the state
{noreply, State}.

terminate(Reason, State) ->
% ... manage shutdown here
ok.

Fig. 4. A callback module of an OTP gen_server.

-module(user).
-behavior(context_agent).
-include("context_agent_api.hrl"). % contextual API
% API
receive(AgentId, Source, Msg) -> context_agent:cast(AgentId, {receive_msg, Source, Msg}).
send(AgentId, Dest, Msg) -> context_agent:cast(AgentId, {send_msg, Dest, Msg}).

handle_cast({receive_msg, Source, Msg}, State) ->
% ... forward to my client
{noreply, State}.

handle_cast({send_msg, Dest, Msg}, State) ->
% ... forward to dest client
{noreply, State}.

% startup, shutdown and other auxiliary functions

Fig. 5. The callback for the user agents in ContextChat.

hosts simply by specifying the address of the remote Erlang system. Messages can be sent to local or remote agents trans-
parently, supporting seamless migration of applications to a distributed setting. Finally, agents are an ideal way to structure
distributed software where different subsystems must be decoupled, run in parallel, and communicate asynchronously.

3.2. ContextErlang basics

To support fast development of self-adaptive applications, ContextErlang provides context-aware agents through the OTP
context_agent behavior. According to the OTP conventions, the programmer only needs to define the callback module
containing the functions for the core functionalities. We refer to these functions as handle functions.4

Behavioral adaptation of context-aware agents is performed in ContextErlang through variations. A variation encapsulates
a set of changes that modify the way an agent reacts to messages. Variations are combined in a stack fashion through pro-
ceed. When the agent receives a request message, the function to execute is searched along the stack of active variations
up to the callback. This design is substantially similar to the layer combination in other COP languages. It clearly separates
the basic behavior of an agent from the variations, making the application easier to understand and maintain, and supports
reuse through combination of variations.

Fig. 5 shows the callback of the context-aware agents that implement user agents inside the ContextChat server. The
callback declares a function for receiving messages and a function for sending them to a different agent. Based on this
example, hereafter, we analyze how the programmer can interact with variations in ContextErlang. Then we discuss how
variations are declared and activated and how they can be sent to another node, changing the behavior of remote agents.

4 In the OTP terminology, functions inside callback modules are commonly referred to as callback functions. Since in ContextErlang functions like
handle_call and handle_cast appear both in callback and in variation modules, we indicate them uniformly with the term handle functions to avoid
confusion.

28 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
-module(offline).
-context_cast([receive_msg/2]). % Contextual dispatch

...
handle_cast({receive_msg, Source, Msg}, State) ->

store_chats:store_message(Source, Msg),
{noreply, State}.

Fig. 6. The offline variation in ContextChat.

-module(backup).
-context_cast([receive_msg/2]).
...

handle_cast({receive_msg, Source, Msg}, State) ->
% send Msg to the remote server

...
?proceed_cast({receive_msg, Source, Msg}, State),
{noreply, State}.

Fig. 7. The backup variation in ContextChat.

Modularization of variations A variation is an Erlang module defining a set of handle functions exposed to the contextual
dispatching. Implementing variations as Erlang modules has several advantages. It simplifies their development since it does
not require syntax extensions, increasing the chances of acceptance by the programmers and avoiding the risk of breaking
compatibility with existing tools. In addition, it improves extensibility, since new variations can be added by implementing
new modules without modifying the existing code.

The offline variation (Fig. 6) defines an asynchronous receive_msg function, which at the moment of the activation
overrides the corresponding function in the callback module. In Fig. 7, the backup variation redefines the receive_msg
function to forward the message to a remote server in charge of the backup. If the backup variation is activated on top of
the user callback, a call to receive causes the implementation inside backup to be called. The proceed call resolves
to the implementation of receive_msg inside the callback module.

Variations can require an initialization or a shutdown phase to work properly. For example, if the offline variation in
ContextChat saves the conversations on disk, a file must be created and opened. ContextErlang allows a variation to declare
the on_activation and the on_deactivation functions, which are guaranteed to be called when the variation is
respectively activated or deactivated. Initialization and cleanup code are placed inside these functions.

Variations activation model Self-adaptive and context aware systems are inherently concurrent because, conceptually, they
receive signals from the context in parallel with the execution of the application logic. For this reason, context-aware
features in adaptive applications are tightly coupled with concurrency features.

To allow asynchronous contextual adaptation, variation activation is performed in an imperative way by a different agent
(an exception is discussed in Section 3.4). A common pattern is that a single agent enacts the role of context manager, and
activates variations on the other agents depending on the context conditions. We expect that additional patterns will be
identified with the practical development of agent-based context-aware applications. For example, agents could be organized
in communities sharing a local context manager, while global context managers supervise other managers, in a hierarchical
fashion.

The modification of the behavior of context-aware agents is exposed by the API of the context_agent module. The
activate_variations function activates a list of variations on a given agent. In this example, the offline variation
is activated on the agent AgentId. Then the backup variation is activated on top of the offline variation:

context_agent:call(
{activate_variations, AgentId, [offline]}),

...
context_agent:call(

{activate_variations, AgentId, [backup, offline]}),

The same updating mechanism can then be used for variations deactivation. We require the atoms in the list to be valid
names of modules available to the Erlang virtual machine. Besides direct interaction with the context_agent, we adhere
to the OTP convention of hiding the interaction with OTP behaviors inside the callback and referencing the agent with the
callback name (Section 3.1). The following code equivalent to the first call in the previous example:

user:activate_variations(AgentId, [offline]),

This is achieved thanks to a context_agent_api.hrl module, which makes the API available when imported by the
callback.

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 29
Unforeseen adaptation with variation transmission Variation transmission is a powerful mechanism to implement software
which reacts to unforeseen conditions. For example, our previous work [22] shows how this feature can be used to adapt
PDA devices to support rescue operations in an emergency scenario.

To design variation transmission and variation dynamic loading we leveraged advanced Erlang VM features, such as
run-time code manipulation, dynamic module loading and remote procedure call. The variation_code module provides
the API for the functionalities concerning variation transmission. The following call sends a variation var to a remote node
node2, and loads var in the virtual machine of node2:

% on node1@machine1
variation_code:send_var(node2@machine2, var)

The send_var call requires the var module to be available to the node1 virtual machine. In the case of the ContextChat
server, variation transmission can be used to allow clients to create a filter variation that manipulates the characters of their
messages. The variation is then dynamically loaded and activated on the user agent. To include the filter in a variation, on
the fly compilation is obtained using the Erlang compiler API. After this process completes, the variation can be activated
on an agent as usual:

user:activate_variations(AgentId, [text_effect])

Of course, loading a module created from a user-defined filter is potentially dangerous and proper input validation is re-
quired to avoid security flaws.

3.3. Coherence among variations: the context abstract data type

COP behavioral variations are activated and combined while the application is running. Consistency among variations
must therefore be ensured. For example, the offline and the online variations in the ContextChat example should not
be active at the same time. COP researchers have already investigated this problem. For example, reflection [23] has been
leveraged to dynamically check the constraints. Other solutions use domain specific languages (DSL) to express declarative
constraints on layers [24], in a way similar to selecting features in software product lines. A constraint violation raises an
error which must be interactively managed by the programmer, so the need for human intervention limits the applicability
of this approach. Subjective-C [25] also introduces a DSL to express context dependencies. The system inspects all the
user-defined relations, possibly triggering an activation if needed. Another approach is to employ formal verification to
statically guarantee layer constraints [21].

Our solution starts from the observation that organizing adaptability concerns in an application, and mapping them to
variations and meaningful variation combinations, always requires careful design. For this reason, in practice, the program-
mer defines in advance which variation combinations are required. To explicitly capture these design choices, ContextErlang

introduces a context abstract data type (ADT). The context ADT encapsulates the variations that can be activated on an
agent, organizing the possible variation combinations and enforcing constraints on their activation. In this way the user
of the context ADT instance is forced by the interface to activate only valid combinations (i.e., those designed in advance
by the ADT programmer). The creation of an unforeseen combination, required by remote variation transmission, is made
explicit. Note that the context ADT solution is not specific to ContextErlang and in principle could be ported to layer-based
COP languages.

The context_ADT module creates a context data type instance from a given specification. The context ADT is organized
as a fixed-size stack. Each level of the stack, referred as a slot, has a name for direct access. Three types of slots are defined.
Activatable slots contain a single variation, which can be active or not. Switch slots contain one or more variations, only
one of which can be active at a certain time instant. Free slots contain a single variation which is left undefined and can
be assigned later. Free slots are the way variations transmitted by remote nodes can be used. In the following example a
context ADT is created for the variations of a user agent.

Spec = [{persistency, {backup, active}}, % Activatable slot, backup is initally active
{tracing, {trace, active}}, % Activatable slot, trace is initally active
{status, [{offline, active}, online]}, % Switch slot, offline is initally active
{text_effect, free_slot}, % Free slot, initally empty
{base_behavior, {user, active}}],

Context = context_ADT:create(Spec),
user:start_link(AgentId, Context)

The formal syntax of the context ADT is reported in Fig. 8.
To start an agent with a given context ADT, the ADT is passed to the start_link function which spawns a new agent.

The management of the variations in the context ADT is performed through the provided API. The following call performs a
switch on the status slot, activating the online variation.

user:in_cur_context_switch(AgentId, online, status)

30 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
CONTEXT_SPEC ::= [SLOT_SPEC*]
SLOT_SPEC ::= {Slotname, SLOT}
SLOT ::= SWITCH_SLOT

| ACTIVATABLE_SLOT
| FREE_SLOT

SWITCH_SLOT ::= [(Varname1,)* {Varname2, active} (,Varname3)*]
ACTIVATABLE_SLOT ::= { Varname, active } | { Varname }
FREE_SLOT ::= free_slot

Fig. 8. The syntax specification of a context ADT.

Fig. 9. The context ADT in ContextErlang. Switching from the online to the offline variation.

The effect of the call is shown in Fig. 9. Similar functions are used to activate and deactivate the variation in an activatable
slot, and for filling a free slot with a variation sent from a remote agent. After being filled, the variation in the free slot can
be activated normally.

The introduction of a context ADT raises a number of critical issues. A possible drawback is that ADT specifications
require an extra design effort. However, the impact on complexity is minimized by using a DSL. In addition, introducing
a variation into an existing context ADT instance requires changing the specification, forcing the programmer to think
about how to combine variations in a coherent way. In any case, the effort required is similar to writing a new set of
layer transitions in EventCJ when a new layer is added. Another issue concerns our choice to limit the stack size and
force variations to obey to certain constrains, which possibly limit variation capabilities. This design choice favors safety
over flexibility. However, in our experience, more flexibility is not really required. For example, changing active variations
by specifying the list of all the active ones (like we showed in the previous sections) is a highly dynamic and flexible
mechanism, which gives the programmer more freedom than it is really needed in most scenarios. Even in the examples
provided in COP literature, most activation schema are quite simple and encompass only few variations, often in mutual
exclusion [21,7,15,19]. Nonetheless, in the spirit of leaving the exploration of more dynamic solutions open, we decided to
keep both activation mechanisms.

The context ADT solution is different from other COP proposals because it enforces the ADT user to adopt correct con-
figurations. Other approaches, instead, allow one to freely operate with variations. Note, however, that the content of the
variations is not checked statically – a choice compliant with Erlang’s dynamic typing. For this reason, run time errors
due to wrong function calls can still occur, even using context ADTs. Interestingly, none of the approaches proposed so far,
including the context ADT, can automatically verify the correctness of variations configurations and run-time transitions
against a given specification. Investigation in this direction is an open research problem.

3.4. Concurrency: consistency with context change

Combining COP with concurrency is not an easy task. Integrating Erlang’s actors with run-time behavioral change requires
careful scrutiny of how these aspects interact. In this section we clarify some fundamental points.

A crucial requirement is that behavioral changes should be safe, i.e., a change of the active variations should not corrupt
the task in execution. As we will explain shortly, this cannot be achieved by simply forbidding a context change while a
message-triggered computation is active. In fact, this functionality is sometimes required. Our solution is based on shaping
ContextErlang around the following principles:

• Non-interference. The context of a running computation cannot be altered by a contextual message.
• Agent authority. An agent retains ultimate authority on its current context.

The first rule states that if an agent A sends a message to an agent B , triggering a computation cmp on B , no agent (not
even A) can change the context of B while cmp is executed by sending a contextual message to B . This is achieved by
processing context-related and other messages one at a time, picking them up from the agent mailbox. Therefore, it is not
possible that context-related messages interfere with the execution activated by a standard message.

The second rule states that an agent can change its context arbitrarily during a computation. This principle is reminiscent
of OO programming, where an object is ultimately responsible for how it responds to messages. This rule is required in some

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 31
practical scenarios with non-trivial concurrency patterns. For example, when a client connects to the ContextChat server,
some data structures in the user agent can be required to be initialized. Examples are the source IP, the client version, or
a status variable that must be set to online. In addition to these operations, since the client is now connected, the online
variation must be activated and the offline variation deactivated. Now consider the case in which these actions (state
changes and variation activation) are performed by two subsequent calls from another agent. With an unlucky interleaving,
a call coming form a third agent can fall between these two, and find the agent with the status set to online but still with
the offline variation active.

In general, with the functions for variation management seen so far, it is not possible to execute a variation manip-
ulation atomically with a set of operations. Of course, agents can coordinate to enforce this constraint at a higher level,
implementing some synchronization mechanism. However this solution requires development of possibly error-prone code
even for trivial tasks. For this reason in ContextErlang all the functions like in_cur_context_switch have an immediate
counterpart which has effect on the context-aware agent that calls them. For example when the user agent receives the
init message, it atomically initializes its internal data structures and activates the online variation atomically.

-module(user).
...
handle_cast({init, Data}, State) ->
% ... initialize the data structure
user:in_my_cur_context_switch(online, status),
{noreply, State}.

Atomicity is guaranteed: while a message is served, other messages are queued and cannot interrupt it. Interestingly, im-
mediate activation is more general than message-based activation, since context-related messages could be implemented as
standard messages which trigger the execution of an immediate activation. To alleviate the programmer from this annoying
task we maintain both versions.

4. Formal semantics

We introduce ContextErlangLite, a kernel untyped language for distributed, concurrent computation. It supports context
adaptation through context-aware agents, variation activation and remote variation transmission. This core language allows
one to reason about the core features of ContextErlang applications, ignoring irrelevant implementation details. This flexi-
bility can also be used to apply the founding principles of ContextErlang to other languages based on the Actor model: we
will discuss this aspect in Section 5.2 by presenting a new COP language implemented on top of Scala.5

The formal semantics for ContextErlangLite is provided in terms of transitions between system configurations. System
configurations model the possible evolutions of a set of nodes executing a given program. A ContextErlang application is
made, at run time, by a set of processes holding a state and waiting for incoming messages.

Related relevant work in the field of formal semantics for the COP paradigm is discussed in Section 6. Because of the
concurrent nature of ContextErlang, the approach we present hereafter was mainly influenced by non-COP core languages,
such as the formal semantics of CoBoxes [26] and the work of DeBoer et al. on futures [27].

Conventions used in the formalization Ordered sequences are indicated with overlined letters when they are comma-
separated, as in functions parameters: a = a1, ..., an . Space-separated ordered sequences are indicated with the Kleene star
operator “*”. The empty sequence is indicated as ∅ while ε indicates unassigned (null) values. The · operator is used to in-
dicate the syntactic concatenation of sequences. In the semantics of the language, we use · to stress the fact that sequences
are ordered, as in the case of message queues. Otherwise, ∪ is used to merge sequences when the order does not matter.
We use the operator ∈ to indicate the presence of an element in a sequence: a ∈ Seq = a1a2 . . .ak iff ∃i : 1 ≤ i ≤ k, a = ai .

We define our formal framework in terms of changes between node configurations, agent configurations and system
configurations. When the distinction is clear from the context, we use the terms agent/node/system and agent/node/system
configurations interchangeably.

4.1. Syntax

Fig. 10 shows the abstract syntax of ContextErlangLite. Starting from the given syntax, other constructs can be added
as usual. A program P is a sequence of node declarations, starting with the declaration of the main node. Each node
declaration explicitly states the name n of the node and a sequence of module declarations MlDec known to the node. The
main node has a special role at system startup (Section 4.4). For this reason its body, besides module declarations, contains
an expression mainexp that triggers the entire computation.

A module declaration can be a callback cml declaration or a variation vml declaration. Both, after the callback or
variation keyword, consist of a name and a set of method declarations B . Expressions include the let operator, values v ,
variables x, synchronous and asynchronous method invocations e.m(e) and e!m(e). Expressions include also the creation of

5 http://www.scala-lang.org/.

http://www.scala-lang.org/

32 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
Prog ::= MainNode Node∗ program
MainNode ::= node n = { MlDec∗ mainexp } main node declaration
Node ::= node n = { MlDec∗ } node declaration
mainexp ::= e main expression
MlDec ::= variation vml{ B∗ } variation declaration

| callback cml{ B∗ } callback declaration
B ::= m(x){e} method declaration

e ::= let x = e in e let operator
| v value
| x variable
| e1; e2 expression sequence
| selfNode reference to local node
| e.m(e) synchronous method call
| e!m(e) asynchronous call
| newProc(cml, e) remote agent creation
| proceed(e) : m(x) : vml proceed call
| selfChange(e) variation change
| varSend(e1, e2) variation transmission

v ::= n | vml | cml values

x ∈ variable names, cml ∈ callback module names,
vml ∈ variation module names, m ∈ method names, n ∈ node identifiers

Fig. 10. The abstract syntax of ContextErlangLite.

Conf ::= N | P | Conf Conf | ε system configuration
N ::= 〈L, n〉N node configuration
P ::= agent configuration
〈self, base, A, M, sender, active, susp〉P

msg ::= 〈p, m(v)〉M | 〈m(v)〉M message
p ::= 〈w, n〉R agent reference
self ::= p agent self-reference
sender ::= p | ε agent waiting for answer
active ::= e | ε agent’s active task
susp ::= e | ε agent’s suspended task
base ::= cml agent’s callback module name

ml ::= cml | vml module name
e ::= ... expressions
v ::= ... | p | ok values
L ::= ml∗ loaded module names
M ::= msg∗ inbox message queue
A ::= vml∗ active variation names
cml callback module name
vml variation module name
w node agent reference
n node reference
m method name

Fig. 11. The semantic entities of ContextErlangLite.

a new agent newProc(cml, e) with a callback module cml on a node which results from evaluating a given expression e.
The expression e1; e2 is syntactic sugar for let x = e1 in e2 with x in FV(e2), where FV(e) is the set of free variables in
the expression e. Other expressions are context-related: the proceed primitive for calling the next eligible function in a
variation stack, selfChange(e) for the activation of a variation sequence on an agent, varSend(e1, e2) for sending a
variation to a remote node.

Values that can be explicitly used in a program are node names n, variation names vml, and callback names cml. Fol-
lowing the convention in [28], underline phrases are inserted by elaboration and are not part of the surface syntax. For
example, in the expression proceed(e) : m(x) : vml the annotations of the method m(x) and of the variation module vml,
in which proceed is called, are added statically by a code processor and are not part of the core language. This conven-
tion is adopted to simplify the semantic rules. We assume that a correct ContextErlangLite program respects the following
constraints:

• Module names for callbacks and variations cml and vml in module declarations are unique.
• Method signatures (method name and parameters arity) are unique within a module declaration.
• Node names in node declarations are unique.
• Node names used in the program are valid node names, i.e., they are names of declared nodes.

4.2. Semantic entities

This section introduces the semantic entities used to describe the behavior of the system (Fig. 11). A configuration Conf
is a sequence of node and agent configurations. Therefore, the top-level configuration is a snapshot of the whole system.
A node configuration is a record 〈L, n〉N , where L is a sequence of loaded modules and n is a node identifier.

An agent configuration is a tuple 〈self , base, A, M, sender, active, susp〉P; self is the (unique) reference to the agent and is
represented as a tuple 〈w, n〉R , which identifies the agent with a unique identifier w and a reference to the node itself n;
base is the name of the callback module, which constitutes the basic behavior of the agent; A is the sequence of names of
the active variations that modify the basic behavior of the agent; M is the inbox of the agent, i.e., a sequence of incoming
messages; sender is a reference to the agent that requested a method execution to this agent and is waiting for a reply;

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 33
node n = { ... callback cml { ... } ... }
cml ∈D n

[callback declared in node]

node n = { ... variation vml { ... } ... }

vml ∈D n
[variation declared in node]

vml ∈D n ∨ cml ∈D n

ml ∈D n
[module declared in node]

|v| = |x|
variation vml {... (x)e ...}

mbody(vml,m(v)) = (x)e

|v| = |x|
callback cml {... (x)e ...}
mbody(cml,m(v)) = (x)e

[method body]

|v| = |x|
variation vml {... (x)e ...}

m(v) ∈D vml

|v| = |x|
callback cml {... (x)e ...}

m(v) ∈D cml

[method ownership]

mli : � j (m(v) ∈D ml j , j < i, 1 ≤ i ≤ n, 1 ≤ j ≤ n)

getml(ml1 ... mln, m(v)) = mli
[module selection]

Fig. 12. Auxiliary predicates and functions that extract information from the program code.

active is the currently active task (i.e., the code in execution); susp is a suspended task. Both the active and the suspended
tasks are evaluation contexts, with the hole filled with the next expression to be evaluated.

There are two types of messages: 〈p, m(v)〉M and 〈m(v)〉M , where m(v) is the method call with the actual parameters
and p is a reference to the sending agent. The former, which includes the sender’s reference, stands for a synchronous
call; the latter instead stands for an asynchronous call. The definition ml ::= cml | vml allows callback modules and variation
modules to be treated in a uniform way. Expressions are the same defined in the syntax of the language. Values can be
agent references p and the ok return value in addition to the values already defined in the syntax.

Evaluation contexts We use evaluation contexts for a compact representation. In context reduction semantics, a term is
decomposed into a reduction context and a redex, and semantic rules reduce the redex [29]. This allows for avoiding to
provide a partitioning algorithm, relying on as few implementation details as possible. Evaluation contexts are terms with
an empty part � in a certain position. We indicate with e�[e′] the replacement of the hole � in e with the expression e′ .

e� ::= � | let x = e� in e | e�!m(e) | v!m(v, e�, e) |
e�.m(e) | v.m(v, e�, e) |
newProc(e�, e) | newProc(v, e�) |
proceed(v, e�, e) : vml : m(x) |
selfChange(v, e�, e) |
varSend(e�, e) | varSend(v, e�)

In our syntax, redexes can only be expressions, so holes appear only at positions where expressions are expected.

Auxiliary predicates and functions To simplify the semantic rules, we introduce some auxiliary predicates and functions. The
rules shown in Fig. 12 define predicates and functions operating on the static code of the program. The rules [callback
declared in node], [variation declared in node] and [module declared in node] define the predicate ∈D which holds if a module
is declared inside a node. The [method body] rules define the mbody(cml, m(v)) function which returns the method body
for a call m(x), searching it in a variation module with name cml. A similar rule is given for callback modules. The [method
ownership] rules define a predicate stating that a method eligible for managing a given call is defined inside a certain
module. The rule [module selection] defines the function getml that given a sequence of module names ml1 ... mlk and a
method call m(v), returns the name of the first module in the sequence implementing a method compatible with the
signature of the call. This function is used for method dispatching over the sequence of the active variations of an agent.

4.3. Rules

The dynamic semantics of ContextErlangLite is defined in terms of a small-step reduction relation on configurations of
agents and nodes (Figs. 13 and 14). Rules are applied to (sub)configurations. The arrow notation in the rules means that a
(sub)configuration reduces in one step to another (sub)configuration. Matches of rules on configurations are modulo associa-
tivity and commutativity of node configurations and agent configurations. Hereafter, the semantic rules of ContextErlangLite

are analyzed in detail. Groups of rules that conceptually participate in the same semantic operation and whose activation
is usually related are described together. For terms which can assume the value ε we use the notation xε as a shorthand
for x ∪ ε .

34 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
〈p, cml, A, M, pε1, e�[let x = v in e], ε〉P

→ 〈p, cml, A, M, pε1, e�[e[v/x]], ε〉P
[let]

L′ = L ∪ {cml2}, cml2 ∈D n2 w fresh in n2 p2 = 〈w,n2〉R

〈p1, cml1, A, M, pε3, e�[newProc(cml2,n2)], ε〉P 〈L,n2〉N

→ 〈p1, cml1, A, M, pε3, e�[p2], ε〉P 〈p2, cml2,∅,∅, ε, ε, ε〉P 〈L′,n2〉N

[new proc]

p = 〈w,n〉R

〈p, cml, A, M, pε1, e�[selfNode], ε〉P

→ 〈p, cml, A, M, pε1, e�[n], ε〉P

[self-node]

msg = 〈p1,m(v)〉M

〈p1, cml1, A1, M1, pε3, e�[p2.m(v)], ε〉P 〈p2, cml2, A2, M2, pε4, eε2, eεsusp〉P

→ 〈p1, cml1, A1, M1, pε3, ε, e�[p2.m(v)]〉P 〈p2, cml2, A2,msg · M2, pε4, eε2, eεsusp〉P

[sync mth call]

msg = 〈m(v)〉M

〈p1, cml1, A1, M1, pε3, e�[p2!m(v)], ε〉P 〈p2, cml2, A2, M2, pε4, eε2, eεsusp〉P

→ 〈p1, cml1, A1, M1, pε3, e�[ok], ε〉P 〈p2, cml2, A2,msg · M2, pε4, eε2, eεsusp〉P

[async mth call]

getml(A · cml,m(v)) = ml mbody(ml,m(v)) = (x)e

〈p1, cml, A, M · 〈p2,m(v)〉M, ε, ε, ε〉P

→ 〈p1, cml, A, M, p2, e[v/x], ε〉P

[sync exec]

getml(A · cml,m(v)) = ml mbody(ml,m(v)) = (x)e

〈p1, cml, A, M · 〈m(v)〉M, ε, ε, ε〉P

→ 〈p1, cml, A, M, ε, e[v/x], ε〉P

[async exec]

〈p1, cml1, A1, M1, p2, v1, ε〉P 〈p2, cml2, A2, M2, pε , ε, e�[p1.m(v2)]〉P

→ 〈p1, cml1, A1, M1, ε, ε, ε〉P 〈p2, cml2, A2, M2, pε , e�[v1], ε〉P
[sync return]

Conf1 → Conf′1
Conf1 Conf2 → Conf′1 Conf2

[subconf]

Fig. 13. The formal semantics of ContextErlangLite.

Let The [let] rule expresses the substitution of variables within expressions in other expressions. We use e2[e1/x] to denote
the standard capture-avoiding substitution of the expression e1 for the free variable x in the expression e2.

Agent creation The newProc(cml, n) command creates a new agent with callback module name cml on the node n. new-
Proc(cml, n) is reduced to a reference p to the new agent (rule [new proc]). The created agent belongs to the node n. If
not already loaded, the module name cml is added to the names of loaded modules of the node n (lazy loading). The new
agent is initialized with an empty set of active variation names and an empty message queue. The [self node] rule allows an
agent to obtain a reference to the node where it is running and can be used by an agent to spawn another agent on the
same node.

Method call In the case of a synchronous method call, an agent sends a message to another agent, which adds it to its inbox
queue [sync mth call]. Synchronous call messages contain the reference to the sender (for the delivery of the response), and
the call itself i.e., the name of the method with the actual parameters. The current task of the sender is placed in the
suspended task field, while the sender is blocked waiting for a response. In the case of a synchronous call ([sync mth call]),
the message contains only the method to call and the actual parameters. The message is added to the queue of the receiver;
the sender immediately returns and can continue its computation.

When an agent is idle (i.e., the last three fields of the agent record are ε), a message can be removed from the incoming
queue to be served. In the case of a synchronous message [sync exec], the sender of the message is added to the waiting
agent field. Formal parameters are replaced with the actual parameters, and the expression in the method body is added
to the active task field. In the case of an asynchronous message [async exec], since no answer is expected by the sender,
the waiting agent field remains empty. After the parameter substitution, the expression in the method body is added to the
active task field.

The rule [sync return] is triggered when the receiving agent has finished the computation associated with the message. In
that case, the reference to the waiting agent is removed from the receiver. The sender’s original computation is reactivated
by moving it from the suspended task field to the active field and reducing the method call to the return value computed
by the callee.

Subconfiguration reduction Reduction applies to a subconfiguration by the rule [subconf]. Rules application on a partial
configuration involves the reduction of the other partial configurations up to the top level configuration.

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 35
A = vml1 ... vmli ... vmlk 1 ≤ i ≤ k |v| = |x|
getml(vmli+1 ... vmlk cml,m(v)) = ml mbody(ml,m(v)) = (x)e

〈p, cml, A, M, pε1, e�[proceed(v) : m(x) : vmli], ε〉P

→ 〈p, cml, A, M, pε1, e�[e[v/x]], ε〉P

[proceed]

A′ = vml p = 〈w,n〉R L′ = L ∪ {ml ∈ vml | ml ∈D n, ml /∈ L}
〈p, cml, A, M, pε1, e�[selfChange(vml)], ε〉P 〈L,n〉N

→ 〈p, cml, A′, M, pε1, e�[ok], ε〉P 〈L′,n〉N

[self var change]

n1 �= n2 p = 〈w,n1〉R vml ∈D n1 ∧ vml ∈ L1 L′
2 = L2 ∪ vml

〈p, cml, A, M, pε3, e�[varSend(vml,n2)], ε〉P 〈L1,n1〉N 〈L2,n2〉N

→ 〈p, cml, A, M, pε3, e�[ok], ε〉P 〈L1,n1〉N 〈L′
2,n2〉N

[variation sending]

Fig. 14. The formal semantics of ContextErlangLite: rules associated with context-awareness.

Proceed The [proceed] rule formalizes the semantics of proceed, which calls the next eligible method in the active vari-
ations sequence. A proceed call from inside a method m belonging to the variation of name vmli , works as follows. The
sequence of the variations following vmli in the sequence of the active variations names of the agent concatenated with the
callback module name vmli+1 ... vmlk cml is searched for a method with the same signature of m. The retrieved method is
then executed binding the actual parameters of the proceed call. Note that the proceed primitive is semantically differ-
ent with respect to the standard method calls, since it is synchronous and it is immediately executed without interaction
with the inbox queue of the called agent.

Variation change An agent can change the sequence of its own active variations by invoking the selfChange primitive.
Like proceed, this primitive does not add a message to the inbox of the agent, but is immediately executed. The variation
names list in the call becomes the new sequence of active variations in the agent [self var change]. The names of the
variations to be activated must be in the set of the already loaded modules names L of the node the agent belongs to.
Otherwise, the variations are required to be in the declarations of the node. In this case, they are (lazily) loaded by adding
them to L.

As we already noted, the formal semantics includes only the immediate version of functions for variation manipula-
tion. However, in practical applications it is often required that a synchronous or asynchronous request for a variation
change is sent from another agent to the agent to be affected by the change. In the semantics, this can be easily achieved
by adding a varChange(vml) method to the callback module of the receiving agent. This method simply executes the
selfChange(vml) operation.

Variation sending The varSend primitive allows an agent on a node n1 to add to a remote node n2 a variation, which
was previously unknown to n2, i.e., which is not in the declarations D of n2 [variation sending]. The variation name is
immediately added to the set of loaded module names L of n2. This behavior formalizes eager code loading.

4.4. Program execution

The execution of a ContextErlangLite system starts with an initial agent running alone in the main node. All the other
nodes contain no active agents. The computation is triggered by the initial agent spawning new agents, possibly on other
nodes. The initial system configuration is a set of nodes N1 ... Nk and an initial agent P1:

Conf = N1 N2 ... Ni ... Nk P1

Each node Ni = 〈L, ni〉N is associated with a node declaration in the program, where ni is the node identifier stated in the
declaration. N1 is the main node and n1 its identifier. The initial configuration of each node has an empty set of loaded
module names L.

Ni = 〈∅,ni〉N ∀i : i ∈ 1 ... k

The initial agent P1, whose unique identifier is w1, starts the computation in node n1. To keep the notation uniform with
the other agents, the callback module field is initialized with a fictitious name main, which however is never used in the
execution.

P1 = 〈p1,main,∅,∅, ε,mainexp, ε〉P p1 = 〈w1,n1〉R

The inbox is initialized to the empty set, the sender field and the susp field are set to ε . The expression mainexp is set as
the active task of the process, triggering the all subsequent computation.

36 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
4.5. Properties

In this section we consider our guiding principles for managing context in a concurrent and distributed environment,
presented in Section 3.4, and show that they are enforced by the semantics. For convenience, we start from the second
principle, i.e., Agent authority, that states an agent retains ultimate authority on its current context. We formalize it as the
following statement:

Statement 1 (Agent authority).
∀w, n, cml, A, A′, M, M ′, pεsusp, p′

εsusp, Conf , Conf ′, e, eεsusp, e′, e′
εsusp

if �e�, vml such that e = e�[selfChange(vml)]
and 〈〈w, n〉R , cml, A, M, pεsusp, e, eεsusp〉P , Conf → 〈〈w, n〉R , cml, A′, M ′, p′

εsusp, e′
ε, e′

εsusp〉P , Conf ′
then A = A′ .

This result is a direct consequence of the fact that in the semantics the only way of modifying A is by [self var change].
The first principle, i.e., Non-interference, states that the context of a running computation cannot be altered by a contextual

message. We formalize it as in the following statement:

Statement 2 (Non-interference).
∀w, n, cml, A, A′, M, M ′, pεsusp, p′

εsusp, Conf , Conf ′, e, eεsusp, e′, e′
εsusp

if �e�, vml such that e = e�[selfChange(vml)]
and 〈〈w, n〉R , cml, A, M · msg, pεsusp, e, eεsusp〉P , Conf → 〈〈w, n〉R , cml, A′, M ′, p′

εsusp, e′
ε, e′

εsusp〉P , Conf ′

where msg is either 〈p2 , varChange(vml)〉M or 〈varChange(vml)〉M

then A = A′ .

Proof. We know that if e �= ε , then the computation is still “running”. Hence, according to the semantics, we can apply
neither [sync exec], nor [async exec]. We also know that e does not contain any selfChange subterm, so we cannot apply
[self var change]. Therefore, A′ = A. �
4.6. Discussion

The development of ContextErlang’s formal semantics is a key contribution of this work. As we showed above, it allowed
us to reason about all the corner cases in the execution of ContextErlang programs. In particular, the critical aspect is
the consistency of the execution of ContextErlang programs across the change of variations. The formalization shows that
execution of adapted code and behavioral changes do not interfere.

In addition, the semantics was an invaluable tool to reason about the implications of our design choices. For example,
the need for immediate functions for variations activation (Section 3.4) firstly emerged in the development of the semantics.
Interestingly, this issue then practically arose in the development of ContextChat and we finally formulated it as the agent
authority principle stated in the previous sections.

Finally, to get more confidence on the soundness of our formalization, we used Maude [30] to develop an executable
prototype. Tool support helped us to test the semantics, checking its correct execution. A semantics with evaluation contexts,
such as the one we introduced here, requires some machinery to be properly encoded in rewriting logic [31]. Existing tools
provide context evaluation out of the box, such as PLT Redex [32] and K-Maude [33]. However we preferred to apply some
simplifications and remove evaluation contexts. This choice is motivated by efficiency considerations and by the possibility
of fine-grain tuning in anticipation of the use of our prototype for verification, a topic that has been already explored in
Maude [34]. For example, we chose an imperative style with storage for the execution of method bodies and a storage stack
for nested proceed calls in a way that resembles function calls in assembly languages. At the price of a less elegant model
and of some expressive limitations, this approach allowed us to get rid of evaluation contexts.

5. Validation

In this section, we discuss how we empirically validated ContextErlang. First, to demonstrate that ContextErlang is ef-
fective in the development of real-world applications we describe here two prototypes: one is the ContextChat extensively
presented in the previous sections, and the other is an autonomic storage server that will be analyzed next. Second, to
show that the design of ContextErlang is applicable in general to languages supporting the Actor Model, we implemented
ContextScala, a COP language based on Scala. Finally, to provide empirical evidence of its usability, we studied the critical
performance aspects of ContextErlang and ContextScala through a micro-benchmark and compared performance with other
COP languages. Then we reimplemented the autonomic storage server in plain Erlang and compared its performances with
the ContextErlang version.

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 37
5.1. The adaptive storage server case study

The second case study presented in this paper concerns the development of an adaptive storage server. The storage server
is an autonomic application providing storage a space for generic resources such as web pages or serialized data structures.
The application behaves like a key-value map: keys allow one to retrieve resources or modify their value. Resources can
be stored in memory or on disk. Autonomicity ensures that the most requested entities are moved into memory to reduce
service time. The disk is used for other resources to avoid excessive memory consumption.

Each resource is implemented as a context-aware agent, which reacts to messages like set_value and get_value.
These details are hidden from the user who interacts only with an API module. The implementation of each resource with
an agent is normal in Erlang OTP due to the extremely lightweight Erlang processes [35]. This makes the application scal-
able by simply spawning agents on several machines, because Erlang manages remote messaging in a transparent way. The
on_disk and the in_memory variations can be dynamically activated on each agent. An optional logging variation pro-
vides a trace of the system execution. Autonomic behavior is implemented in a decentralized fashion: each agent migrates
the resource to memory depending on the frequency of the requests it receives.

The development of the application confirmed the validity of the design choices of ContextErlang. Since the on_disk
and the in_memory variations are mutually exclusive, they can be managed through a switch slot of the context ADT. The
logging variation occupies an activatable slot. The support for initialization and shutting down of variations (Section 3.3)
is required to automatically initialize the needed files when the on_disk variation is activated and to move the resource in
memory when it is deactivated. Since each agent adapts autonomously, the in_memory variation activation is performed
by the agent itself through the immediate API (Section 3.3). Note that moving the autonomic capabilities to a centralized
engine would require the adaptation to be driven by context-related messages.

5.2. Validating the design: ContextScala

To demonstrate that the design principles of ContextErlang are applicable in general to actor-based languages, we im-
plemented ContextScala, a COP language that applies the concepts of ContextErlang to the Scala programming language. We
implemented ContextScala on top of the Akka6 framework. Akka is a toolkit for distributed and highly concurrent fault-
tolerant applications in Scala. Like the OTP platform, Akka is based on the Actor model, provides means to distribute actors
on different hosts, monitor their behavior and obtain notifications of failures.

Fig. 15 (left) shows part of the autonomic storage server implemented in ContextScala and the respective ContextErlang

counterparts (right). Clearly, ContextScala applications look different from ContextErlang applications. First, the language
abstractions of ContextErlang, originally designed for Erlang, have to be mapped to Scala. Second, the design of ContextScala

needs to comply with the Akka design principles. More generally, our goal in the development of ContextScala was to
demonstrate the generality of the ContextErlang model, not to maximize the similarity with the Erlang implementation and
syntax. Here, we outline the design of ContextScala and summarize the main differences with ContextErlang.

Variations are modeled as classes that extend the Variation[T] class. Like functions in ContextErlang variation mod-
ules, methods in ContextScala variations implement chunks of the variation’s functionality. For example, in Fig. 15, the
setValue and the getValue methods in the OnDisk class implement the behavior of the context-aware agent when
the disk is used as a storage. An advantage of this design is that variations can be instantiated and store local state. However,
this feature comes at the cost of creating an instance of the variation for each agent. ContextErlang and ContextScala differ
in the way they represent messages. In OTP and ContextErlang, messages are modeled as tuples. According to the Akka best
practices, instead, in ContextScala messages are encoded as Scala case classes, which are immutable, and can be pattern
matched. Fig. 15 shows the setValue and the getValue messages used to assign – respectively, store – a value into
an agent of the autonomic storage. ContextScala agents inherit from the ContextAgent class, which provides the func-
tionalities of context-aware agents, including reacting to contextual messages and dispatching among variations. Internally,
ContextAgent extends akka.actor.Actor, the standard actors in the Akka toolkit. As a result, ContextScala context-
aware agents can interoperate with the rest of the Akka infrastructure in the same way ContextErlang context-aware agents
are compatible with the OTP.

The implementation of ContextScala is quite different from ContextErlang. Erlang is a dynamically typed language, while
Scala is statically typed, which makes it harder to implement a custom dispatching mechanism for method calls. Internally,
ContextScala relies on reflection to overcome the restrictions imposed by the type system. Obviously, this comes at the cost
of reducing safety. For example, run time casts are needed to refine the type of the return value for variations methods. We
note, however, that the Akka actor system already weakens safety compared to traditional applications, since messages are
pattern-matched at run time and the type of the return value cannot be checked statically.

Despite the obvious differences due to the underlying languages, ContextScala and ContextErlang share the same key de-
sign principles and formal semantics. In ContextScala, like in ContextErlang, developers shape adaptive applications around
the concept of context-aware agents and, like in ContextErlang, adaptations are organized through variations that are

6 http://akka.io.

http://akka.io

38 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
class OnDisk extends Variation[OnDisk] {
def setValue(i: Any): Any = { ... }
def getValue(): Any = { ... }
...

}

class InMemory extends Variation[InMemory] {
def setValue(i: Any): Any = { ... }
def getValue(): Any = { ... }
...

}
class ResourceAgent() extends ContextAgent {

setActiveVariations(List(’OnDisk))
}

object StorageServer extends App {
val system = ActorSystem("StorageServer")

def store(key: Key, value: Any): Any = {
val actor = system.actorFor(key)
sendMsg(actor,setValue(value))

}
def lookup(key: Key) = { ... }
...

}
case class setValue(i: Any) extends Msg[setValue]
case class getValue() extends Msg[getValue]

-module(on_disk).
handle_call({set,Value}, From, State) -> ...

Ret;
handle_call(get, From, State) -> ...

{reply, Reply, State1}.
...

-module(in_memory).
handle_call({set,Value}, From, State) -> ...

Ret;
handle_call(get, From, State) -> ...

{reply, Reply, State1}.
...

-module(resource_agent).
-behavior(context_agent).
start() ->
gen_server:start_link({local, ?MODULE},

?MODULE, [], []).
...

-module(storage_server).
store(Key,Value) ->

resource:set(Key,Value).

lookup(Key) ->
resource:get(Key).

...

Fig. 15. Fragments of the autonomic storage server in ContextScala (left), and their ContextErlang counterparts (right).

activated and deactivated dynamically. Furthermore, ContextScala enforces the agent authority and the non-interference
principles, thanks to the same design inherited from ContextErlang.

5.3. Performance

Our implementation introduces a performance overhead, because a function call requires to be dispatched over possi-
bly several active variations. ContextErlang is a prototype and a wide space for optimization is available, e.g. hashing the
function lookup. However our evaluation shows that the approach is feasible and already usable even in the absence of
specific optimizations. All the tests we report hereafter were performed on a laptop equipped with an Intel Core 2 Duo
T9500 2.60 GHz, 4 GB RAM, and GNU/Linux OS. Concerning the languages, the version numbers are: Erlang R13 hipe,
Ruby 1.8.7, ContextR 1.0.2, JavaScript Chrome 16.0.912.63, ContextJS Lively Kernel 2, Python 2.7, ContextPy 1.1, PyContext 1.0,
SBCL 1.0.45.0, ContextL 0.61, Scala 2.10.

Microbenchmark We compare the overhead introduced by ContextErlang with respect to other COP implementations [36].
The purpose is to compare the message dispatching slowdown introduced by each COP extension. We decided to keep
our methodology as simple as possible, following the approach elaborated in [37] for AOP micro-benchmarking: compare
methods performance without aspects (i.e., a non-advised method) and with aspects deployed.

We assume a message delivery in a non-layered method, as a reference (Table 1, second column). Then we evaluate the
time required to dispatch a layered method with 0 to 5 active proceeding layers/variations (columns 3 to 8). Each method
and each partial method increments a global variable (in the ContextErlang benchmark we used an agent-local variable,
since Erlang has no shared state by design). All benchmarks are executed 105 times taking the mean over 10 executions,
with a complete dry run (therefore 106 executions) to achieve steady state of the runtime. Information about warm-up
times for each implementation is not easy to find. However benchmarks are running for minutes, and we observed a ×10
time factor from 105 to 106 executions, increasing our confidence on the steady state of the runtimes. In the case of
ContextErlang, COP functionalities are implemented in the OTP library, which adds many time-consuming operations due
to the built-in fault-tolerance support. Therefore, it would be meaningless to compare message sending to a ContextErlang

context-aware agent with a basic function call. For this reason, we compare it (Table 1, line 2, column 2) not only with
a pure Erlang function call (FC), but also with a message to a pure Erlang agent (PA), and with a message to a standard
gen_server OTP agent. Fig. 16 shows the ratio between the time required to call a layered method and a basic method
for various languages (note the logarithmic scale). For ContextErlang we report the comparison with all the three cases.

Previous work [38] highlighted a huge performance impact of COP and motivated research on possible optimizations [39].
Our evaluation confirms this result. Our results also show that ContextErlang introduces a non-negligible overhead, which,
however, is not dissimilar from other COP languages. For example, a ContextErlang message to a context-aware agent is

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 39
Table 1
Performance of COP languages in the microbenchmark. All values are in milliseconds.

Language Basic call 0 1 2 3 4 5

ContextErlang 540.65 (OTP)/90.58 (PA)/9.38 (FC) 815.33 1071.14 1311.59 1531.77 1819.07 2074.73
ContextR 43.52 (Ruby) 768.58 1768.58 2768.58 3768.58 4768.58 5768.58
ContextJS 0.40 (JavaScript) 85.90 158.60 211.00 256.80 299.20 338.30
ContextPy 24.22 (Python) 406.85 661.01 873.50 1163.31 1397.62 1623.49
PyContext 24.48 (Python) 410.66 854.66 1265.21 1668.65 2073.56 2472.16
ContextL 2.2 (Common Lisp) 2.50 3.50 4.30 5.30 6.40 7.40
ContextScala 301.25 (Akka) 502.30 795.03 980.15 1120.13 1302.18 1521.96

Fig. 16. Performance of layered methods compared to the basic methods in various COP languages.

Fig. 17. Performance comparison for the autonomic storage server.

approximately 87 times slower than a function call in Erlang and 1.5 times slower than a message sent to a gen_server
standard OTP agent. Note that Fig. 16 should be read carefully. For example, results of ContextJS are due to the aggressive
optimization of JavaScript compiler and VM which makes basic methods extremely efficient [20]. This leads to the apparently
poor performance of the ContextJS COP implementation compared to the basic language in Fig. 16. Nevertheless, ContextJS
is among the fastest COP extension in our test (Table 1).

To overcome the limitations of micro-benchmarking, we estimated the overhead of ContextErlang in the adaptive storage
server. We implemented the autonomic storage server in plain Erlang. Variations are simulated by if chains switching
between different behaviors. Active behavioral variations are stored in each agent’s state. Since the logging functionality
introduces a uniform overhead, we left it off. In the experiment, each resource is initially created, it is requested 10 times,
and then deleted. This is equivalent to starting an agent, delivering 10 messages, and shutting down the agent. We tuned
the autonomic behavior so that the resource is initially stored on disk and after the first 2 requests is moved to memory.
The measures were taken by repeating this process on all the resources for a variable number of resources, from 1 up to
1000. For each run we took the mean among 10 executions. Fig. 17 shows the results. To make the graph more readable we
plot the trend of the two executions as the mean over 100 values. The analysis shows that the significant overhead detected
by the micro-benchmark becomes almost negligible in a real application.

6. Related work

Our work touched several research areas. For each of them, in the sequel, we briefly discuss related work.

40 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
Self-adaptive software An overview of self-adaptive software, the existing technology and the open research challenges can
be found in [2]. According to that work, adaptation mechanisms can be classified along the artifact & granularity anal-
ysis direction, which include parameters, method, aspect, component, application, architecture, system and data center.
In that classification, COP abstractions roughly lie at the method/aspect granularity level. The problem of dynamic soft-
ware adaptation has been extensively tackled from a software architecture standpoint [4–6]. Architecture-based adaptation
frameworks include Rainbow [40] and the Fractal component system [41]. McKinley et al. [9] analyze the features required
by self-adaptive software and identify AOP, metaprogramming and component-based architecture as enabling technolo-
gies. Special-purpose programming paradigms like metaprogramming and AOP have been employed for a long time by
researchers to support self-adaptive software. An analysis and comparison of metaprogramming, AOP and COP in this con-
text can be found in [36].

Context-oriented programming COP has been recently explored, starting from the pioneering work on ContextL [16,23] based
on the CLOS metaobject protocol. Over the time, many COP extensions have been developed for different languages such
as Python, Smalltalk, Ruby, JavaScript and Groovy. This effort has been extended to less dynamic languages, in which COP
extensions are more difficult to implement due to the limited reflective capabilities, such as Java [7,15,19,21,42]. A compari-
son of the existing COP languages with a performance evaluation of the available solutions can be found in [38]. Our recent
work [8] surveys the available solutions and compares them from a software engineering standpoint.

ContextErlang [1,22] is in the COP tradition since it supports modularization, dynamic activation, and combination of
behavioral variations. It differentiates from most COP approaches, since behavioral variations are activated on per-agent
bases through context-related messages rather than in a dynamic scope. ContextErlang variations are similar to COP layers.
The difference is that layers usually contain partial definitions associated with different classes. While nothing prevents a
ContextErlang variation from containing partial definitions referring to different agents, this is scarcely used in applications,
since the variation must be activated singularly on each agent. Therefore a ContextErlang variation is usually associated with
a specific agent and contains the partial definition for that agent.

Ambience is a COP language based on AmOS, an object system built on top of Common Lisp [43]. Ambience – designed
simultaneously with ContextL – is alternative approach to layer-based COP languages, leveraging multimethods dispatching
and context objects. In [43] the authors recognize the need for variations activation by an external monitoring thread. In
Ambience the context – and therefore the active variations – is global and shared among all the threads. A monitoring
thread can asynchronously change the context of the whole application. In ContextErlang each agent can adapt individually,
as we believe that in certain scenarios this feature is required. For example, in the ContextChat server, per-agent adaptation
is crucial to adapt to each single client. As stated by the authors of Ambience, asynchronous activation exposes the system
to the risk of behavioral inconsistency. ContextErlang enforces consistency by design, avoiding that variation activations
conflict with other computations (Section 3.3).

Event-based COP The need for event-based composition and activation has been recognized as an emerging need for COP
in our previous work [44], in which we presented the initial implementation of ContextErlang as a promising solution. As
already discussed (Section 2) Kamina et al. [21] also tackled this issue in the EventCJ Java COP extensions.

Jcop [19] is a Java COP extension which introduces two constructs. Declarative layer composition allows to express variation
activation declaratively through joinpoint quantification. Conditional composition activates variations depending on a run time
condition. So the developer is relieved from specifying variation activation programmatically in the code. Jcop allows the
compact representation of otherwise scattered with activation statements, a problem that emerged in the development of
ContextChat (Section 2). However, activation in Jcop is always dynamically scoped and can lead to the problem of excessive
adaptation propagation.

Aspect-oriented programming COP has a certain degree of similarity with AOP [10], which may be viewed as a general
term indicating a family of approaches that support modularization of crosscutting concerns. The main contribution of COP
with respect to AOP is to provide specific abstractions for context adaptation. AOP can be indirectly applied for the same
purposes and some COP language implementations rely on AOP [21,19,42]. However, although some AOP frameworks exist
support dynamic aspect activation, such as Prose [45], AOP focuses on compile time feature selection and combination,
while the COP core concept is run time activation and combination of behavioral variations. A detailed comparison of the
two approaches can be found in [16,19,7].

Event-based programming Event-driven or event-based programming is a programming paradigm in which the flow of con-
trol is determined by events that can be triggered and listened according to the Observer pattern. This approach is a
contribution to address the problem of concerns not amenable to modularization along the main dimension of decomposi-
tion. Implicit invocation (II) languages [18] offer a linguistic support for this mechanism, obtaining better encapsulation of
crosscutting concerns and decoupling from other code.

EScala [46] supports not only events that are imperatively triggered by the programmer, but also implicit events that
are transparently raised at method boundaries, in the style of AOP. Ptolemy [47] also combines ideas from AOP and II
languages. In Ptolemy code blocks are bound to events as closures, which can be executed inside the event handler. Since

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 41
basic behavior can be written in the closure and observers can execute code around the execution of the closure, Ptolemy
seems to be the II language that most resembles COP techniques.

Formal approaches in COP Recently, researchers started investigating the use of formal models to study COP systems. Schip-
pers et al. [48] present a semantics of layers using a delegation-based machine devoted to the modeling of crosscutting
concerns. Schippers et al. [49] use a graph-transformation approach for the operational semantics of a delegation-based OO
language with actors and layer activation. Kamina et al. [21] propose to describe a COP system as a finite state automa-
ton. States model context conditions of the system and arcs model context transitions. The automaton is translated into
Promela and verified with the SPIN model checker [50]. The works by form Clarke and Sergey [51] and by Hirschfeld on
ContextFJ [52] describe core calculi that extend Featherweight Java [53] to encompass COP abstractions. A further extension
of ContextFJ also admits changes in the interface of objects [54]. To the best of our knowledge, none of those formalization
takes into account distribution and concurrency, as ContextErlangLite does.

Other language-level techniques Subjective dispatch [55] adds a dimension to the receiver-based method dispatch of OO
languages, considering also the sender in the dispatch mechanism. COP conceptually operates in a similar way, taking into
account the context as a dispatching dimension. Feature oriented programming (FOP) targets crosscutting concerns with the
goal of synthesizing programs in software product lines [56] from single units of functionality conventionally called features.
Features are selected and combined at compile time while COP variations, due to the volatile nature of the context, are
activated and combined dynamically.

Roles describe objects’ state and behavior in a certain context [57]. Pradel and Odersky [58] propose Scala Roles, a library
for Scala that provides support for augmenting objects with roles. As in ContextScala, new functionalities can be added at
run time. In contrast to Scala Roles, where roles apply to objects, in ContextScala, variations apply to Context-aware agents,
which also encapsulate Actor-like concurrency.

Several modularization approaches have been proposed in literature, such as traits [59] and mixins [60], which offer an
alternative to the modularization mechanism provided by classes. Multiclass-granularity solutions include mixin layers [61]
and delegation layers [62]. Compared to COP, these approaches focus on composition of functionalities and not on activation
and deactivation of behavioral variations.

7. Conclusions

In this work, we presented ContextErlang, a COP language that supports several features commonly required by adaptive
systems. The design of ContextErlang integrates dynamic adaptation and modularization of behavioral variations with asyn-
chronous activation and distribution. In addition, ContextErlang supports unforeseen adaptation and variation constraints –
a way to discipline dynamic activation of multiple variations. The key design decision of ContextErlang has been to integrate
the actor model with COP abstractions, a solutions which, to the best of our knowledge, has never been proposed before.
We provided an implementation that fits into the OTP, the de facto standard for real-world Erlang applications. The paper
also presented ContextErlang’s formalization with a core calculus that specifies the exact semantics. Finally, it provided an
extensive empirical assessment of its potential benefits in the development of self-adaptive software.

Currently, programmers of adaptive systems leverage software architectures or design patterns to implement adaptation
features. Some solutions also rely on language-level approaches for specific tasks. For example AOP is used to intercept the
program execution at certain joinpoints and redirect the control flow depending on the current context [36]. We believe
that addressing the requirements of adaptive software with a coherent language design can encourage programmers of
adaptive-systems to adopt language-level solutions and benefit of their expressivity, conciseness and safety.

Acknowledgements

This research has been partially funded by the European Community’s IDEAS–ERC Programme, Project 227977 (SMSCom)
and by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
under grant No. 01IC12S01V (Sinnodium).

References

[1] G. Salvaneschi, C. Ghezzi, M. Pradella, ContextErlang: introducing context-oriented programming in the actor model, in: Proceedings of the 11th Annual
International Conference on Aspect-Oriented Software Development, AOSD ’12, ACM, New York, NY, USA, 2012, pp. 191–202.

[2] M. Salehie, L. Tahvildari, Self-adaptive software: landscape and research challenges, ACM Trans. Auton. Adapt. Syst. 4 (2009) 14:1–14:42.
[3] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (2003) 41–50.
[4] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: ICSE ’98: Proceedings of the 20th International Conference on

Software Engineering, IEEE Computer Society, Washington, DC, USA, 1998, pp. 177–186.
[5] R.N. Taylor, N. Medvidovic, P. Oreizy, Architectural styles for runtime software adaptation, in: 3rd European Conference on Software Architecture, ECSA,

IEEE, 2009, pp. 171–180.
[6] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in: 2007 Future of Software Engineering, FOSE ’07, IEEE Computer Society,

Washington, DC, USA, 2007, pp. 259–268.
[7] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming, J. Object Technol. 7 (2008).

http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53616C76616E65736368693A323031323A4349433A323136323034392E32313632303732s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53616C76616E65736368693A323031323A4349433A323136323034392E32313632303732s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53616C656869653A323030393A53534C3A313531363533332E31353136353338s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib31302E313130394D432E323030332E31313630303535s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4F7265697A793938s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4F7265697A793938s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib63697465756C696B653A36363935393539s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib63697465756C696B653A36363935393539s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4B72616D65723A323030373A5353413A313235333533322E31323534373233s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4B72616D65723A323030373A5353413A313235333533322E31323534373233s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib48697273636866656C6432303038s1

42 G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43
[8] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: a software engineering perspective, J. Syst. Softw. 85 (2012) 1801–1817.
[9] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, B.H.C. Cheng, Composing adaptive software, Computer 37 (2004) 56–64.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of AspectJ, in: J. Knudsen (Ed.), ECOOP 2001 – Object-Oriented
Programming, in: Lecture Notes in Computer Science, vol. 2072, Springer, Berlin/Heidelberg, 2001, pp. 327–354.

[11] A. Popovici, T. Gross, G. Alonso, Dynamic weaving for aspect-oriented programming, in: Proceedings of the 1st International Conference on Aspect-
Oriented Software Development, AOSD ’02, ACM, New York, NY, USA, 2002, pp. 141–147.

[12] A. Popovici, G. Alonso, T. Gross, Just-in-time aspects: efficient dynamic weaving for Java, in: Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, AOSD ’03, ACM, New York, NY, USA, 2003, pp. 100–109.

[13] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, JAC: a flexible solution for aspect-oriented programming in Java, in: A. Yonezawa, S. Matsuoka (Eds.),
Reflection, in: Lecture Notes in Computer Science, vol. 2192, Springer, 2001, pp. 1–24.

[14] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, L. Martelli, JAC: an aspect-based distributed dynamic framework, 2004.
[15] M. Appeltauer, R. Hirschfeld, M. Haupt, H. Masuhara, ContextJ: context-oriented programming with Java, Inf. Media Technol. 6 (2011) 399–419.
[16] P. Costanza, R. Hirschfeld, Language constructs for context-oriented programming: an overview of ContextL, in: Proceedings of the 2005 Symposium

on Dynamic Languages, DLS ’05, 2005.
[17] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: a programming paradigm for autonomic systems, CoRR arXiv:1105.0069, 2011.
[18] D. Notkin, D. Garlan, W.G. Griswold, K. Sullivan, Adding implicit invocation to languages: three approaches, in: Object Technologies for Advanced

Software, First JSSST International Symposium, in: LNCS, vol. 742, 1993.
[19] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, K. Kawauchi, Event-specific software composition in context-oriented programming, in: B. Baudry,

E. Wohlstadter (Eds.), Software Composition, in: LNCS, vol. 6144, 2010.
[20] J. Lincke, M. Appeltauer, B. Steinert, R. Hirschfeld, An open implementation for context-oriented layer composition in ContextJS, Sci. Comput. Program.

76 (2011) 1194–1209.
[21] K. Tetsuo, A. Tomoyuki, H. Masuhara, EventCJ: a context-oriented programming language with declarative event-based context transition, in: Proceed-

ings of the 10th International Conference on Aspect-Oriented Software Development, AOSD ’11.
[22] C. Ghezzi, M. Pradella, G. Salvaneschi, Programming language support to context-aware adaptation – a case-study with Erlang, in: SEAMS: Software

Engineering for Adaptive and Self-Managing Systems, International Workshop, ICSE 2010, 2010.
[23] P. Costanza, R. Hirschfeld, Reflective layer activation in contextL, in: SAC ’07: Proceedings of the 2007 ACM Symposium on Applied Computing, 2007.
[24] P. Costanza, T. D’Hondt, Feature descriptions for context-oriented programming, in: Software Product Lines, 12th International Conference (SPLC), 2008,

pp. 9–14.
[25] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, J. Goffaux, Subjective-C: bringing context to mobile platform programming, in: Proceedings of

the International Conference on Software Language Engineering, in: Lecture Notes in Computer Science, Springer-Verlag, Eindhoven, The Netherlands,
2010.

[26] J. Schäfer, A. Poetzsch-Heffter, JCoBox: generalizing active objects to concurrent components, in: 24th European Conference on Object-Oriented Pro-
gramming (ECOOP 2010), in: LNCS, vol. 66, Springer, 2010, pp. 275–299.

[27] F.S. DeBoer, D. Clarke, E.B. Johnsen, A complete guide to the future, in: Proc. 16th European Symposium on Programming (ESOP07), in: LNCS, vol. 4421,
Springer-Verlag, 2007, pp. 316–330.

[28] M. Flatt, S. Krishnamurthi, M. Felleisen, A programmer’s reduction semantics for classes and mixins, in: Formal Syntax and Semantics of Java, Springer-
Verlag, London, UK, 1999, pp. 241–269.

[29] M. Felleisen, R. Hieb, The revised report on the syntactic theories of sequential control and state, Theor. Comput. Sci. 103 (1992) 235–271.
[30] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, All About Maude — A High-Performance Logical Framework. How to

Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350, Springer, 2007.
[31] T.F. Serbanuta, G. Rosu, J. Meseguer, A rewriting logic approach to operational semantics, Inf. Comput. 207 (2009) 305–340, Special issue on Structural

Operational Semantics (SOS).
[32] M. Felleisen, R.B. Findler, M. Flatt, Semantics Engineering with PLT Redex, The MIT Press, 2009.
[33] T.F. Şerbanuţă, G. Roşu, K-Maude: a rewriting based tool for semantics of programming languages, in: P.C. Ölveczky (Ed.), Rewriting Logic and Its

Applications – 8th International Workshop, WRLA 2010, in: Lecture Notes in Computer Science, vol. 6381, 2010, pp. 104–122.
[34] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL model checker, in: F. Gadducci, U. Montanari (Eds.), Fourth Workshop on Rewriting Logic

and Its Applications, WRLA ’02, in: Electronic Notes in Theoretical Computer Science, vol. 71, Elsevier, 2002.
[35] M. Logan, E. Merritt, R. Carlsson, Erlang and OTP in Action, Manning Publications, 2010.
[36] G. Salvaneschi, C. Ghezzi, M. Pradella, An analysis of language-level support for self-adaptive software, ACM Trans. Auton. Adapt. Syst. 8 (2013) 7:1–7:29.
[37] M. Haupt, M. Mezini, Micro-measurements for dynamic aspect-oriented systems, in: M. Weske, P. Liggesmeyer (Eds.), Object-Oriented and Internet-

Based Technologies, in: LNCS, vol. 3263, Springer, Berlin/Heidelberg, 2004.
[38] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, M. Perscheid, A comparison of context-oriented programming languages, in: COP ’09: International

Workshop on Context-Oriented Programming, ACM, New York, NY, USA, 2009, pp. 1–6.
[39] M. Appeltauer, M. Haupt, R. Hirschfeld, Layered method dispatch with INVOKEDYNAMIC: an implementation study, in: COP ’10, 2010, pp. 4:1–4:6.
[40] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based self-adaptation with reusable infrastructure, Computer 37

(2004) 46–54.
[41] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani, The FRACTAL component model and its support in Java: experiences with auto-adaptive

and reconfigurable systems, Softw. Pract. Exp. 36 (2006) 1257–1284.
[42] G. Salvaneschi, C. Ghezzi, M. Pradella, JavaCtx: seamless toolchain integration for context-oriented programming, in: COP ’11, 2011.
[43] S. González, K. Mens, P. Heymans, Highly dynamic behaviour adaptability through prototypes with subjective multimethods, in: Proceedings of the

2007 Symposium on Dynamic Languages, DLS ’07, 2007, pp. 77–88.
[44] C. Ghezzi, M. Pradella, G. Salvaneschi, Context-oriented programming in highly concurrent systems, in: Proceedings of the 2nd International Workshop

on Context-Oriented Programming, COP ’10, ACM, New York, NY, USA, 2010.
[45] A. Popovici, T. Gross, G. Alonso, Dynamic weaving for aspect-oriented programming, in: Proceedings of the 1st International Conference on Aspect-

Oriented Software Development, AOSD ’02, 2002.
[46] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, J. Noyé, EScala: modular event-driven object interactions in Scala, in: Proceedings of the Tenth Interna-

tional Conference on Aspect-Oriented Software Development, AOSD ’11, ACM, New York, NY, USA, 2011, pp. 227–240.
[47] H. Rajan, G.T. Leavens, Ptolemy: a language with quantified, typed events, in: J. Vitek (Ed.), ECOOP 2008, Cyprus, in: LNCS, vol. 5142, Springer, Berlin,

2008, pp. 155–179.
[48] H. Schippers, D. Janssens, M. Haupt, R. Hirschfeld, Delegation-based semantics for modularizing crosscutting concerns, in: Proceedings of the 23rd ACM

SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications, OOPSLA ’08, ACM, New York, NY, USA, 2008, pp. 525–542.
[49] H. Schippers, T. Molderez, D. Janssens, A graph-based operational semantics for context-oriented programming, in: International Workshop on Context-

oriented Programming at ECOOP’10.
[50] G. Holzmann, The Spin Model Checker: Primer and Reference Manual, first edition, Addison–Wesley Professional, 2003.

http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53616C76616E65736368693230313231383031s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4D634B696E6C657932303034s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib737072696E6765726C696E6B3A31302E313030372F332D3534302D34353333372D373138s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib737072696E6765726C696E6B3A31302E313030372F332D3534302D34353333372D373138s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F766963693A323030323A4457413A3530383338362E353038343034s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F766963693A323030323A4457413A3530383338362E353038343034s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F766963693A323030333A4A41453A3634333630332E363433363134s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F766963693A323030333A4A41453A3634333630332E363433363134s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib636F6E662F7265666C656374696F6E2F5061776C616B5344463031s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib636F6E662F7265666C656374696F6E2F5061776C616B5344463031s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib636F6E746578746As1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436F7374616E7A613035s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436F7374616E7A613035s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib6175746F6E6F6D6963434F50s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4E6F746B393361s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4E6F746B393361s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib6A636F70s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib6A636F70s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4C696E636B6532303130s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4C696E636B6532303130s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436F6E7465787445726C616E675345414D5332303130s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436F6E7465787445726C616E675345414D5332303130s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib31323434323739s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib676F6E7A616C657A2B313073756263s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib676F6E7A616C657A2B313073756263s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib676F6E7A616C657A2B313073756263s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib5363686165666572506F65747A7363684865666674657231306A636F626F78s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib5363686165666572506F65747A7363684865666674657231306A636F626F78s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4465426F6572303761636F6D706C657465s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4465426F6572303761636F6D706C657465s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib363538383038s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib363538383038s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib46656C6C656973656E393274686572657669736564s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4D617564652D626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4D617564652D626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53657262616E75746132303039333035s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib53657262616E75746132303039333035s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib31373935373732s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib73657262616E7574612D726F73752D323031302D77726C61s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib73657262616E7574612D726F73752D323031302D77726C61s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib454D536C746C32303032s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib454D536C746C32303032s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib6C6F67616Es1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib616E616C797369734C616E67537570706F7274s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3534302D33303139362D3737s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib737072696E6765726C696E6B3A31302E313030372F3937382D332D3534302D33303139362D3737s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib417070656C746175657232303039s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib417070656C746175657232303039s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib417070656C74617565723A696E766F6B6564796E616D6963s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4761726C616E3034s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4761726C616E3034s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4272756E65746F6E3A323030363A46434D3A313135323333332E31313532333435s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4272756E65746F6E3A323030363A46434D3A313135323333332E31313532333435s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib6A617661637478s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib476F6E7A616C657A3A32303037s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib476F6E7A616C657A3A32303037s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib313536323131s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib313536323131s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F7669636932303032s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib506F706F7669636932303032s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib47617369756E61733A323031313A454D453A313936303237352E31393630333033s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib47617369756E61733A323031313A454D453A313936303237352E31393630333033s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib52616A616E2D4C656176656E733038s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib52616A616E2D4C656176656E733038s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib5363686970706572733A32303038s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib5363686970706572733A32303038s1

G. Salvaneschi et al. / Science of Computer Programming 102 (2015) 20–43 43
[51] D. Clarke, I. Sergey, A semantics for context-oriented programming with layers, in: International Workshop on Context-Oriented Programming, COP ’09,
ACM, New York, NY, USA, 2009, pp. 10:1–10:6.

[52] R. Hirschfeld, A. Igarashi, H. Masuhara, ContextFJ: a minimal core calculus for context-oriented programming, in: Proceedings of the 10th International
Workshop on Foundations of Aspect-Oriented Languages, FOAL ’11, ACM, New York, NY, USA, 2011, pp. 19–23.

[53] A. Igarashi, B.C. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for Java and GJ, in: ACM Transactions on Programming Languages and
Systems, pp. 132–146.

[54] A. Igarashi, R. Hirschfeld, H. Masuhara, A type system for dynamic layer composition, in: Proceedings of the Workshop on the Foundations of Object-
Oriented Languages (FOOL), Co-Located with the Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA, 2012,
ACM, Tucson, Arizona, USA, 2012.

[55] R.B. Smith, D. Ungar, A simple and unifying approach to subjective objects, Theory Pract. Object Syst. 2 (1996) 161–178.
[56] D. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in: Proceedings of the 25th International Conference on Software Engineering,

ICSE ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 187–197.
[57] F. Steimann, On the representation of roles in object-oriented and conceptual modelling, Data Knowl. Eng. 35 (2000) 83–106.
[58] M. Pradel, M. Odersky, Scala roles – a lightweight approach towards reusable collaborations, in: International Conference on Software and Data,

Technologies (ICSOFT ’08), 2008.
[59] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A.P. Black, Traits: a mechanism for fine-grained reuse, ACM Trans. Program. Lang. Syst. 28 (2006)

331–388.
[60] G. Bracha, W. Cook, Mixin-based inheritance, in: Proc. OOPSLA 90, ACM Press, 1990, pp. 303–311.
[61] Y. Smaragdakis, D. Batory, Implementing layered designs with mixin layers, in: ECCOP 98: Proceedings of the 12th European Conference on Object-

Oriented Programming, Springer, 1998, pp. 550–570.
[62] K. Ostermann, Dynamically composable collaborations with delegation layers, in: Proceedings of the 16th European Conference on Object-Oriented

Programming, ECOOP ’02, Springer-Verlag, London, UK, 2002, pp. 89–110.

http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436C61726B653A32303039s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib436C61726B653A32303039s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib48697273636866656C643A323031313A434D433A313936303531302E31393630353135s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib48697273636866656C643A323031313A434D433A313936303531302E31393630353135s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib415479706553797374656D666F7244796E616D69634C61796572s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib415479706553797374656D666F7244796E616D69634C61796572s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib415479706553797374656D666F7244796E616D69634C61796572s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib536D697468553936s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4261746F72793A32303033s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4261746F72793A32303033s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib537465696D616E6E3A323030303A52524F3A3336303735302E333630373439s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4475636173736532303036s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4475636173736532303036s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib42726163686139306D6978696Es1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib536D6172616764616B69733938s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib536D6172616764616B69733938s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4F737465726D616E6E3A32303032s1
http://refhub.elsevier.com/S0167-6423(14)00557-7/bib4F737465726D616E6E3A32303032s1

	ContextErlang: A language for distributed context-aware self-adaptive applications
	1 Introduction
	2 Adaptive software and COP
	2.1 Context-oriented programming
	2.2 The ContextChat case study
	2.3 The context-oriented programming solution
	2.4 Overview of the ContextErlang solution

	3 The design of ContextErlang
	3.1 Erlang and the Open Telecom Platform
	3.2 ContextErlang basics
	3.3 Coherence among variations: the context abstract data type
	3.4 Concurrency: consistency with context change

	4 Formal semantics
	4.1 Syntax
	4.2 Semantic entities
	4.3 Rules
	4.4 Program execution
	4.5 Properties
	4.6 Discussion

	5 Validation
	5.1 The adaptive storage server case study
	5.2 Validating the design: ContextScala
	5.3 Performance

	6 Related work
	7 Conclusions
	Acknowledgements
	References

