Static Latency Tracking with Placement Types

Pascal Weisenburger
Technische Universitdt Darmstadt
weisenburger@cs.tu-darmstadt.de

Abstract

Large-scale distributed applications, e.g., in geodistributed data
centers, pose a performance challenge to developers which need
to take high cross-data-center latency communication cost into
account. We present a preliminary investigation of a type system
that tracks latency and makes the cost of remote calls explicit,
raising developers’ awareness of communication overhead.

1 Introduction

To implement efficient and responsive geodistributed applications,
it is imperative to avoid high-latency communication and take
advantage of locality if possible [18]. In a distributed system, com-
ponents trigger computations on other components, e.g., by sending
events [10, 11, 17]. Such remote computations involve network com-
munication, which entails significantly higher latency compared
to local execution. Latencies between servers within a data center,
for example, are often comparably low (under 2 ms), whereas la-
tencies between geodistributed data centers, which may be located
on different continents, can be orders of magnitude higher (over
100 ms) [1]. Ignoring this fundamental difference can lead to serious
performance problems [7].

We investigate a design where the programming language makes
latency explicit making the programmer aware of the latency at-
tached to running computations. Our type system serves two pur-
poses: (1) It infers an estimation for the upper bound of the latency
attached to a computation. Developers can use this information
to restructure programs that exhibit excessive latency. (2) Devel-
opers can explicitly ascribe types with a specific latency label, in
which case, the type system guarantees that the estimated latency
attached to a computation is not higher than specified upper bound.
Otherwise, the type system statically rejects the program.

We built on our previous work on placement types, where the
type system distinguishes between different components of the
distributed system using placement specification for data and com-
putations [16].

2 Latency Tracking

Placement Types in a Nutshell Placement types associate loca-
tions to computations. For example, the placement type Int on A
denotes a computation ¢ that produces an integer on a component
A. We consider three data centers A, Band C. Using placement types,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FIfJP’18, July 16-21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5939-9/18/07...$15.00
https://doi.org/10.1145/3236454.3236486

Tobias Reinhard
Technische Universitat Darmstadt
tobi.reinhard@googlemail.com

Guido Salvaneschi
Technische Universitidt Darmstadt
salvaneschi@cs.tu-darmstadt.de

separate locations are represented by different types, modeled by
distinct Peer subtypes in a Scala-like syntax:

trait A extends Peer

trait B extends Peer

trait C extends Peer

A computation def c(n: Int): IntonA=2xn with placement
type Int on A executes on data center A:

def c(n: Int): Inton A=2x%n

The execution of ¢ can be triggered remotely (e.g., from data cen-
ter B), in which case ¢ computes an Int value on A, but the value
will be available to B only after it is transmitted over network.

Latency Types The result type of a remote computation includes
the latency [of the remote computation, e.g., the type of the remote
value received on B is Int withLatency 1:

def d(): Int withLatency 1 on B = remote call c(5)

For simplicity, we simply count the number of remote calls in the
type system to approximate the latency overhead for a distributed
computation. In perspective, developers should be able to specify la-
tency values for remote communication between components based
on domain knowledge, e.g., from monitoring. Latency between two
data centers is not entirely deterministic and depends on many fac-
tors. However, we assume that in the domain of geodistributed data
centers, which are placed at fixed locations and typically exhibit
communication latencies in the order of hundreds of milliseconds,
it is feasible for developers to give adequate estimates.

Our approach goes beyond distinguishing between local and
remote access. Our goal is to give developers a more faithful cost es-
timation of remote calls. Complex cases composing many different
functions hinder keeping track of all (potentially nested) remote
accesses for programmers. The type system makes the developers’
assumptions on latency explicit and ensures that they hold. It tracks
latency across function calls, which is especially important to guar-
antee that an application still complies to the annotated latencies
after changing parts of the implementation, e.g., for maintenance.

Composition Composing values that may have a latency label,
entails three cases:

(1) Nesting remote computations. When a computation (e.g., d
in the example) with a latency label is called remotely, we increase
the latency value, thus, tracking the accumulated total latency:

def e(): Int withLatency 2 on C = remote call d()

(2) Composing remote computations. Composing two computa-
tions (e.g., ¢ and d) that both have a latency label requires adding
latencies, which approximates the combination of two successive
(synchronous) remote calls. In an asynchronous model, taking the
maximum value of both latencies is more appropriate:

def f(): Int withLatency 3 on C = (remote call c(5)) * (remote call d())

(3) Interaction with unlabeled types. Traditional values of type T
(e.g., Int) are assumed to have a latency of 0, i.e., T is treated as
T withLatency 0. We allow unlabeled types for compatibility and
to save developers from labeling every explicitly ascribed type:

def g(): Int withLatency 1 on C = (remote call c(5)) * 10

FTfJP’18, July 16-21, 2018, Amsterdam, Netherlands

Under- and Over-Approximation The types given in the exam-
ples are the ones computed by our type system. It is usually not
a problem to over-approximate latency since this means that the
developer considers a higher latency value when, in fact, the result
will be available faster at run time. Hence, we allow explicit type
ascriptions that over-approximate latency:

def h(): Int withLatency 3 on C = remote call d()

However, under-approximating latency can lead to performance
problems at run time. Hence, we do not consider an under-approx-
imation sound and the following code produces a type error at
compile time:

def i(): Int withLatency 1 on C = remote call d()

The inferred or explicitly annotated latency value always esti-
mates an upper bound for the latency attached to a computation.

2.1 Core Language

We sketch the type system for a core calculus. We annotate stan-
dard types T with a latency value [, assigning refined types (T, [)
to terms. We distinguish between types T and placement types
T on P. Terms t include standard terms and remote access through
remote call. We model the definition of placed values as nested
p-terms binding t-terms to names. Thus, p-terms express top-level
placed bindings (expressing the program’s top-level definitions, we
do not assign types to p-terms) and ¢-terms are placed expressions,
which evaluate to the value that is bound. Values are placed using
the following let x with latency [on P construct:
I;Prt:(T,lp)onP I,x:(T,l;1)onP+p

(T-PLACE) lo<h
T + letx with latencylyon P = tinp

The type system guarantees that the computed latency label Iy
for the term ¢ is not higher than the latency /; given explicitly by
the developer. In case I is higher, the program is rejected.

To count the number of remote calls to approximate the latency
overhead, for every remote call to a computation ¢, we derive the
refined type (T, lp) for t. The term remote call ¢ is given type (T,),
where T is the same but the latency annotation /; is increased:

T;Pyrt: (T, lo)onP1 Py # P

(T-REMOTE)
T; Py + remotecallt : (T,l;)on Py

Lh=lh+1

We model type-level latency tracking for operations performed
on values and for control structures. For example, for an if expres-
sion, we evaluate the condition expression and we evaluate either
the then branch or the else branch:

T;PFty:(Boollp)onP
I;PrHH :(T,ll)onP

I;Prtp:(T,l2)onP
(TIr) 1 = Iy + max(ly,l2)
T;Priftgthentielsety : (T,[)onP

To (over-)approximate latency, the latency of the resulting type
is the sum of (i) the condition and (ii) the maximum of the branches,
i.e., we calculate the upper bound over both branches.

In our current model, we do not support latency computation
over unbounded loops or for general recursion. Collection types
with statically known sizes - e.g., as in Shapeless [13] - could
be used to give an upper bound, e.g., on the number of iterations.
Operating in the domain of a fixed set of geodistributed data centers
also helps making the case of unbounded loops less common.

Pascal Weisenburger, Tobias Reinhard, and Guido Salvaneschi

2.2 Outlook

We plan to conduct a case study consisting of multiple geodis-
tributed data centers. Clients query the nearest data center to
achieve decent user experience. We want to guarantee certain prop-
erties statically, e.g., that data paths dealing with local data do not
involve remote communication or that certain operations do not
exhibit unexpectedly high latency. Although we need to resort to a
synthetic setting, we intend to base the locations of the data cen-
ters on real ones [5], specifying realistic latency values for remote
communication between data centers.

We are currently working (i) on completing our formal model to
prove our system sound and (ii) on a Scala embedding for latency
tracking integrated into our ScalaLoci! language, which provides
an implementation of placement types. Latency values in our Scala
embedding can be represented using type-level Peano numbers.
Since latency refinements are only used statically but not accessed
dynamically, they can be phantom, imposing no run time overhead.
Alternatively, literal singleton types (as implemented by the Type-
level Scala compiler [15] and Dotty [4]) can be used for latency
refinements, performing arithmetic operations using a macro.

We currently do not consider lost messages, but message loss
and retransmission increases latency and should be considered as
part of the latency estimation. A further refinement is to associate
probability estimates to latency values.

3 Related Work

To the best of our knowledge, no previous work explores type level
latency tracking to promote low latency computations. Jost et al.
[6] augment a type system with amortization (a complexity anal-
ysis that averages over time [14]) to statically analyze worst-case
execution time and heap space bounds depending on the input
of the program by annotating types with cost values. Their ap-
proach, however, targets embedded systems where both time and
space bounds are important. Similar to their approach, we plan to
annotate place types with latency values between components to
compute the overall worst-case latency. End-to-end latency for data
flows in cyber-physical systems has been analyzed based on archi-
tecture models, incrementally refining the analysis while refining
the model [3]. Energy Types [2] raise the developer’s awareness
of potentially inefficient code by encoding phases (with distinct
patterns of energy consumption) and modes (with an associated
energy requirement, e.g., high or low) in the type system.

Information flow type systems, which have been used to enforce
security policies [9], are related to our approach in the sense that
they track additional information associated to data and compu-
tations at the type level. Opposed to security labels, we annotate
computations with latency values. Explicit placement in types has
been investigated in ML5 [12]: Possible worlds, as known from
modal logic and Kripke structures, define placement of computa-
tions on different components. Encodings of types parameterized
with numbers are discussed, e.g., by Kiselyov [8] in Haskell. A
similar approach is applicable to Scala.

Acknowledgments

This work has been co-funded by the German Research Founda-
tion (DFG) as part of project C2 within the Collaborative Research
Center (CRC) 1053 — MAKI, and by the DFG project SA 2918/2-1.

!scala-loci.github.io

Static Latency Tracking with Placement Types

References

(1]

(2]
(3]

=

[o

[10]

Philip A. Bernstein, Sebastian Burckhardt, Sergey Bykov, Natacha Crooks, Jose M.
Faleiro, Gabriel Kliot, Alok Kumbhare, Muntasir Raihan Rahman, Vivek Shah,
Adriana Szekeres, and Jorgen Thelin. 2017. Geo-distribution of Actor-based
Services. In Proceedings of PACMPL (OOPSLA °17). ACM, New York, NY, USA.
Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David Liu. 2012.
Energy Types. In Proceedings of OOPSLA ’12. ACM, New York, NY, USA.

Julien Delange and Peter H. Feiler. 2014. Incremental latency analysis of hetero-
geneous cyber-physical systems. In Proceedings of REACTION ’14.

Dotty. 2013. http://dotty.epfl.ch/. (2013). Accessed 2018-04-16.

Google Data Center FAQ. 2012. http://www.datacenterknowledge.com/archives/
2012/05/15/google-data-center-faq/. (2012). Accessed 2018-04-16.

Steffen Jost, Hans-Wolfgang Loidl, Norman Scaife, Kevin Hammond, Greg
Michaelson, and Martin Hofmann. 2009. Worst-case execution time analysis
through types. In Proceedings of ECRTS "09.

Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. 1994. A Note on
Distributed Computing. Technical Report.

Oleg Kiselyov. 2005. Number-parameterized types. The Monad.Reader 5 (2005).
Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers.
2009. Fabric: A Platform for Secure Distributed Computation and Storage. In
Proceedings of SIGOPS (SOSP "09). ACM, New York, NY, USA.

Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, and
Raheel Arif. 2018. TCEP: Adapting to Dynamic User Environments by Enabling

=
&

[17

(18]

FTfJP’18, July 16-21, 2018, Amsterdam, Netherlands

Transitions Between Operator Placement Mechanisms. In Proceedings of DEBS
’18. ACM, New York, NY, USA.

A. Margara and G. Salvaneschi. 2018. On the Semantics of Distributed Reactive
Programming: the Cost of Consistency. IEEE Transactions on Software Engineering
(2018).

Tom Murphy, VIL, Karl Crary, and Robert Harper. 2008. Type-safe Distributed
Programming with ML5. In Proceedings of TGC "07. Springer-Verlag, Berlin, Hei-
delberg.

Miles Sabin. 2011. Shapeless. http://github.com/milessabin/shapeless. (2011).
Accessed 2018-07-01.

Robert Endre Tarjan. 1985. Amortized computational complexity. SIAM Journal
on Algebraic Discrete Methods 6, 2 (1985).

Typelevel Scala. 2014. http://typelevel.org/scala/. (2014). Accessed 2018-04-16.
Pascal Weisenburger, Mirko Kéhler, and Guido Salvaneschi. 2018. Distributed
System Development with ScalaLoci. In Proceedings of PACMPL (OOPSLA 18).
ACM, New York, NY, USA.

Pascal Weisenburger, Manisha Luthra, Boris Koldehofe, and Guido Salvaneschi.
2017. Quality-aware Runtime Adaptation in Complex Event Processing. In
Proceedings of SEAMS °17. IEEE Press, Piscataway, NJ, USA.

Mike P. Wittie, Veljko Pejovic, Lara Deek, Kevin C. Almeroth, and Ben Y. Zhao.
2010. Exploiting Locality of Interest in Online Social Networks. In Proceedings of
CoNEXT ’10. ACM, New York, NY, USA.

	Abstract
	1 Introduction
	2 Latency Tracking
	2.1 Core Language
	2.2 Outlook

	3 Related Work
	Acknowledgments
	References

